There is considerable controversy over whether pre-Columbian (pre-A.D. 1492) Amazonia was largely "pristine" and sparsely populated by slash-and-burn agriculturists, or instead a densely populated, domesticated landscape, heavily altered by extensive deforestation and anthropogenic burning. The discovery of hundreds of large geometric earthworks beneath intact rainforest across southern Amazonia challenges its status as a pristine landscape, and has been assumed to indicate extensive pre-Columbian deforestation by large populations. We tested these assumptions using coupled local-and regional-scale paleoecological records to reconstruct land use on an earthwork site in northeast Bolivia within the context of regional, climate-driven biome changes. This approach revealed evidence for an alternative scenario of Amazonian land use, which did not necessitate labor-intensive rainforest clearance for earthwork construction. Instead, we show that the inhabitants exploited a naturally open savanna landscape that they maintained around their settlement despite the climatically driven rainforest expansion that began ∼2,000 y ago across the region. Earthwork construction and agriculture on terra firme landscapes currently occupied by the seasonal rainforests of southern Amazonia may therefore not have necessitated large-scale deforestation using stone tools. This finding implies far less labor-and potentially lower population densitythan previously supposed. Our findings demonstrate that current debates over the magnitude and nature of pre-Columbian Amazonian land use, and its impact on global biogeochemical cycling, are potentially flawed because they do not consider this land use in the context of climate-driven forest-savanna biome shifts through the mid-to-late Holocene.paleoecology | Amazonian archaeology | human-environment interactions | Anthropocene | Amazon rainforest
An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to highquality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochrono-logical requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation-climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful
The nature and extent of pre-Columbian (pre-1492 AD) human impact in Amazonia is a contentious issue. The Bolivian Amazon has yielded some of the most impressive evidence for large and complex pre-Columbian societies in the Amazon basin, yet there remains relatively little data concerning the land use of these societies over time. Palaeoecology, when integrated with archaeological data, has the potential to fill these gaps in our knowledge. We present a 6,000-year record of anthropogenic burning, agriculture and vegetation change, from an oxbow lake located adjacent to a pre-Columbian ring-ditch in northeast Bolivia (13°15'44" S, 63°42'37" W). Human occupation around the lake site is inferred from pollen and phytoliths of maize (Zea mays L.) and macroscopic charcoal evidence of anthropogenic burning. First occupation around the lake was radiocarbon dated to ~2500 years BP. The persistence of maize in the record from ~1850 BP suggests that it was an important crop grown in the ring-ditch region in pre-Columbian times, and abundant macroscopic charcoal suggests that pre-Columbian land management entailed more extensive burning of the landscape than the slash-and-burn agriculture practised around the site today. The site was occupied continuously until nearmodern times, although there is evidence for a decline in agricultural intensity or change in land use strategy, and possible population decline, from ~600-500 BP. The long and continuous occupation, which pre-dates the establishment of rainforest in the region, suggests that pre-Columbian land use may have had a significant influence on ecosystem development http://mc.manuscriptcentral.com/holocene HOLOCENE
The late-Holocene expansion of the Tupi-Guarani languages from southern Amazonia to SE South America constitutes one of the largest expansions of any linguistic family in the world, spanning ~4000 km between latitudes 0°S and 35°S at about 2.5k cal. yr BP. However, the underlying reasons for this expansion are a matter of debate. Here, we compare continental-scale palaeoecological, palaeoclimate and archaeological datasets, to examine the role of climate change in facilitating the expansion of this forest-farming culture. Because this expansion lies within the path of the South American Low-Level Jet, the key mechanism for moisture transport across lowland South America, we were able to explore the relationship between climate change, forest expansion and the Tupi-Guarani. Our data synthesis shows broad synchrony between late-Holocene increasing precipitation and southerly expansion of both tropical forest and Guarani archaeological sites -the southernmost branch of the Tupi-Guarani. We conclude that climate change likely facilitated the agricultural expansion of the Guarani forest-farming culture by increasing the area of forested landscape that they could exploit, showing a prime example of ecological opportunism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.