A 1,3,4-benzotriazepine was identified as a suitable lead in our effort toward obtaining a non-peptide parathyroid hormone-1 receptor (PTH1R) antagonist. A process of optimization afforded derivatives displaying nanomolar PTH1R affinity, a representative example of which behaved as a PTH1R antagonist in cell-based cyclic adenosine monophosphate (cAMP) assays, with selectivity over PTH2 receptors.
The systematic optimization of the structure of a novel 2,4,5-trisubstituted imidazole-based cholecystokinin-2 (CCK(2)) receptor antagonist afforded analogues with nanomolar receptor affinity. These compounds were now comparable in their potency to the bicyclic heteroaromatic-based compounds 5 (JB93182) and 6 (JB95008), from which the initial examples were designed using a field-point based molecular modeling approach. They were also orally active as judged by their inhibition of pentagastrin stimulated acid secretion in conscious dogs, in contrast to the bicyclic heteroaromatic-based compounds, which were ineffective because of biliary elimination. Increasing the hydrophilicity through replacement of a particular methylene group with an ether oxygen, as in 3-{[5-(adamantan-1-yloxymethyl)-2-cyclohexyl-1H-imidazole-4-carbonyl]amino}benzoic acid (53), had little effect on the receptor affinity but significantly increased the oral potency. Comparison of the plasma pharmacokinetics and the inhibition of pentagastrin-stimulated acid output following bolus intraduodenal administration of both 53 and 6 indicated that 53 was well absorbed, had a longer half-life, and was not subject to the elimination pathways of the earlier series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.