We have recently developed a new modeling capability to embed the implicit particle‐in‐cell (PIC) model iPIC3D into the Block‐Adaptive‐Tree‐Solarwind‐Roe‐Upwind‐Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD‐EPIC) algorithm is a two‐way coupled kinetic‐fluid model. As one of the very first applications of the MHD‐EPIC algorithm, we simulate the interaction between Jupiter's magnetospheric plasma and Ganymede's magnetosphere. We compare the MHD‐EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHD‐EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD‐EPIC model. The MHD‐EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3‐D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD‐EPIC simulation was only about 4 times more than that of the Hall MHD simulation.
One of the primary objectives of the Rosetta Plasma Consortium, a suite of five plasma instruments on-board the Rosetta spacecraft, is to observe the formation and evolution of plasma interaction regions at the comet 67P/Churyumov-Gerasimenko (67P/CG). Observations made between 2015 April and 2016 February show that solar wind-cometary plasma interaction boundaries and regions formed around 2015 mid-April and lasted through early 2016 January. At least two regions were observed, separated by an ion-neutral collisionopause boundary. The inner region was located on the nucleus side of the boundary and was characterized by low-energy water-group ions, reduced magnetic field pileup and enhanced electron densities. The outer region was located outside of the boundary and was characterized by reduced electron densities, water-group ions that are accelerated to energies above 100 eV and enhanced magnetic field pileup compared to the inner region. The boundary discussed here is outside of the diamagnetic cavity and shows characteristics similar to observations made on-board the Giotto spacecraft in the ion pileup region at 1P/Halley. We find that the boundary is likely to be related to ion-neutral collisions and that its location is influenced by variability in the neutral density and the solar wind dynamic pressure.
We simulated the entire month of January 2005 using the Space Weather Modeling Framework (SWMF) with observed solar wind data as input. We conducted this simulation with and without an inner magnetosphere model and tested two different grid resolutions. We evaluated the model's accuracy in predicting Kp, SYM‐H, AL, and cross‐polar cap potential (CPCP). We find that the model does an excellent job of predicting the SYM‐H index, with a root‐mean‐square error (RMSE) of 17–18 nT. Kp is predicted well during storm time conditions but overpredicted during quiet times by a margin of 1 to 1.7 Kp units. AL is predicted reasonably well on average, with an RMSE of 230–270 nT. However, the model reaches the largest negative AL values significantly less often than the observations. The model tended to overpredict CPCP, with RMSE values on the order of 46–48 kV. We found the results to be insensitive to grid resolution, with the exception of the rate of occurrence for strongly negative AL values. The use of the inner magnetosphere component, however, affected results significantly, with all quantities except CPCP improved notably when the inner magnetosphere model was on.
This paper describes insights into the nature of corotating plasmaspheric irregularities (CPIs) enabled by a newly developed method for range-and time-resolved tomographic images of these structures. The method is based on high-precision measurements of total electron content gradients measure toward cosmic radio sources using an interferometric radio telescope, the Very Large Array (VLA). Exploiting hundreds of hours of data from the VLA Low-band Ionosphere and Transient Experiment, we confirm that CPIs are predominantly detected at night and at L shells ∼2-4. Combining this large data set with other ionospheric, atmospheric, and space weather databases, we have established that CPI detection rates are much higher when levels of solar and geomagnetic activity are low. We also demonstrate that higher detection rates coincide with drivers of perturbations in the ionospheric electric field, including sporadic E and gravity waves. The gravity wave sources most commonly associated with CPIs are jet stream bend/shear and substorm-triggered atmospheric disturbances. We also show that simulations of the plasmaspheric impact of both gravity wave-driven electric field perturbations and polarization electric fields associated with electrobuoyancy waves/sporadic E produce results that are very similar to what is observed with the VLA.
Data‐model validation of ground magnetic perturbation forecasts, specifically of the time rate of change of surface magnetic field, dB/dt, is a critical task for model development and for mitigation of geomagnetically induced current effects. While a current, community‐accepted standard for dB/dt validation exists (Pulkkinen et al., 2013), it has several limitations that prevent more complete understanding of model capability. This work presents recommendations from the International Forum for Space Weather Capabilities Assessment Ground Magnetic Perturbation Working Team for creating a next‐generation validation suite. Four recommendations are made to address the existing suite: greatly expand the number of ground observatories used, expand the number of events included in the suite from six to eight, generate metrics as a function of magnetic local time, and generate metrics as a function of activity type. For each of these, implementation details are explored. Limitations and future considerations are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.