Abstract:In this review, we describe the latest advances in synthesis, characterization, and applications of polymer brushes. Synthetic advances towards well-defined polymer brushes, which meet criteria such as: (i) Efficient and fast grafting, (ii) Applicability on a wide range of substrates; and (iii) Precise control of surface initiator concentration and hence, chain density are discussed. On the characterization end advances in methods for the determination of relevant physical parameters such as surface initiator concentration and grafting density are discussed. The impact of these advances specifically in emerging fields of nano-and bio-technology where interfacial properties such as surface energies are controlled to create nanopatterned polymer brushes and their implications in mediating with biological systems is discussed.
Conjugation of biomolecules for stable presentation is an essential step toward reliable chemically defined platforms for cell culture studies. In this work, we describe the formation of a stable and site-specific amide bond via the coupling of a cysteine terminated peptide at low concentration to an azlactone containing copolymer coating. A copolymer of polyethylene glycol methyl ether methacrylate-ran-vinyl azlactone-ran-glycidyl methacrylate P(PEGMEMA-r-VDM-r-GMA) was used to form a thin coating (20–30 nm) on silicon and polycarbonate substrates. The formation and stability of coating-peptide bonds for peptides containing free thiols and amines were quantified by X-ray photoelectron spectroscopy (XPS) after exposure to cell culture conditions. Peptides containing a thiol as the only nucleophile coupled via a thioester bond; however, the bond was labile under cell culture conditions and almost all the bound peptides were displaced from the surface over a period of 2 days. Coupling with N-terminal primary amine peptides resulted in the formation of an amide bond with low efficiency (<20%). In contrast, peptides containing an N-terminal cysteine, which contain both nucleophiles (free thiol and amine) in close proximity, bound with 67% efficiency under neutral pH, and were stable under the same conditions for 2 weeks. Control studies confirm that the stable amide formation was a result of an intramolecular rearrangement through a N-acyl intermediate that resembles native chemical ligation. Through a combination of XPS and cell culture studies, we show that the cysteine terminated peptides undergo a native chemical ligation process at low peptide concentration in aqueous media, short reaction time, and at room temperature resulting in the stable presentation of peptides beyond 2 weeks for cell culture studies.
Mesenchymal stem cells (MSC), also called marrow stromal cells, are adult cells that have attracted interest for their potential uses in therapeutic applications. There is a pressing need for scalable culture systems due to the large number of cells needed for clinical treatments. Here, a tailorable thin polymer coating—poly(poly(ethylene glycol) methyl ether methacrylate‐ran‐vinyl dimethyl azlactone‐ran‐glycidyl methacrylate) [P(PEGMEMA‐r‐VDM‐r‐GMA); PVG]—to the surface of commercially available polystyrene and glass microcarriers to create chemically defined surfaces for large‐scale cell expansion is applied. These chemically defined microcarriers create a reproducible surface that does not rely on the adsorption of xenogenic serum proteins to mediate cell adhesion. Specifically, this coating method anchors PVG copolymer through ring opening nucleophilic attack by amine residues on poly‐l‐lysine that is pre‐adsorbed to the surface of microcarriers. Importantly, this anchoring reaction preserves the monomer VDM reactivity for subsequent functionalization with an integrin‐specific Arg‐Gly‐Asp peptide to enable cell adhesion and expansion via a one‐step reaction in aqueous media. MSCs cultured on PVG‐coated microcarriers achieve sixfold expansion—similar to the expansion achieved on PS microcarriers—and retain their ability to differentiate after harvesting.
A slot die is the most common type of spinning device used to make melt blown fibers. A pair of louvers was installed in the air flow field of a melt blowing die. Air velocity measurements were taken in the presence of the louvers and in the absence of the louvers. In some experiments, the louvers were parallel with the airflow. In other experiments, the louvers were angled relative to the airflow at angles up to 6°. If higher air velocities can be achieved with louvers, then the melt blowing process can be improved.
The promise of growing tissues to replace or improve the function of failing ones, a practice often referred to as regenerative medicine, has been driven in recent years by the development of stem cells and cell lines. Stem cells are typically cultured outside the body to increase cell number or differentiate the cells into mature cell types. In order to maximize the regenerative potential of these cells, there is a need to understand cell-material interactions that direct cell behavior and cell-material dynamics. Most synthetic surfaces used for growth and differentiation of cells in the lab are impractical and cost prohibitive in clinical labs. This review focuses on the modification of low cost polymer substrates that are already widely used for cell culture so that they may be used to control and understand cell-material interactions. In addition, we discuss the ability of cells to exert dynamic control over the microenvironment leading to a more complex, less controlled surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.