For a commutative ring R, the zero-divisor graph of R is the graph whose vertices are the nonzero zerodivisors of R such that the vertices x and y are adjacent if and only if xy = 0. In this paper, we classify the zero-divisor graphs of Boolean rings, as well as those of Boolean rings that are rationally complete. We also provide a complete list of those rings whose zero-divisor graphs have the property that every vertex is either an end or adjacent to an end.
In this paper, it is proved that the complement of the zero-divisor graph of a partially ordered set is weakly perfect if it has finite clique number, completely answering the question raised by Joshi and Khiste [‘Complement of the zero divisor graph of a lattice’, Bull. Aust. Math. Soc. 89 (2014), 177–190]. As a consequence, the intersection graph of an intersection-closed family of nonempty subsets of a set is weakly perfect if it has finite clique number. These results are applied to annihilating-ideal graphs and intersection graphs of submodules.
An algorithm is presented for constructing the zero-divisor graph of a direct product of integral domains. Moreover, graphs which are realizable as zero-divisor graphs of direct products of integral domains are classified, as well as those of Boolean rings. In particular, graphs which are realizable as zero-divisor graphs of finite reduced commutative rings are classified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.