Subscribe to PCMR and stay up-to-date with the only journal committed to publishing basic research in melanoma and pigment cell biology As a member of the IFPCS or the SMR you automatically get online access to PCMR. Sign up as a member today at www.ifpcs.org or at www.societymelanomaresarch.org
SummaryDespite considerable advances in the past decade, melanin research still suffers from the lack of universally accepted and shared nomenclature, methodologies, and structural models. This paper stems from the joint efforts of chemists, biochemists, physicists, biologists, and physicians with recognized and consolidated expertise in the field of melanins and melanogenesis, who critically reviewed and experimentally revisited methods, standards, and protocols to provide for the first time a consensus set of recommended procedures to be adopted and shared by researchers involved in pigment cell research. The aim of the paper was to define an unprecedented frame of reference built on cutting-edge knowledge and state-of-the-art methodology, to enable reliable comparison of results among laboratories and new progress in the field based on standardized methods and shared information.
Subscribe to PCMR and stay up-to-date with the only journal committed to publishing basic research in melanoma and pigment cell biology As a member of the IFPCS or the SMR you automatically get online access to PCMR. Sign up as a member today at www.ifpcs.org or at www.societymelanomaresarch.org
Neuronal pigments of melanic type were identified in the putamen, cortex, cerebellum, and other major regions of human brain. These pigments consist of granules 30 nm in size, contained in organelles together with lipid droplets, and they accumulate in aging, reaching concentrations as high as 1.5-2.6 g/mg tissue in major brain regions. These pigments, which we term neuromelanins, contain melanic, lipid, and peptide components. The melanic component is aromatic in structure, contains a stable free radical, and is synthesized from the precursor molecule cysteinyl-3,4-dihydroxyphenylalanine. This contrasts with neuromelanin of the substantia nigra, where the melanic precursor is cysteinyl-dopamine. These neuronal pigments have some structural similarities to the melanin found in skin. The precursors of lipid components of the neuromelanins are the polyunsaturated lipids present in the surrounding organelles. The synthesis of neuromelanins in the various regions of the human brain is an important protective process because the melanic component is generated through the removal of reactive/toxic quinones that would otherwise cause neurotoxicity. Furthermore, the resulting melanic component serves an additional protective role through its ability to chelate and accumulate metals, including environmentally toxic metals such as mercury and lead.lipids ͉ neuromelanin ͉ brain aging ͉ neurodegenerative
Melanin is a natural pigment produced within organelles, melanosomes, located in melanocytes. Biological functions of melanosomes are often attributed to the unique chemical properties of the melanins they contain; however, the molecular structure of melanins, the mechanism by which the pigment is produced, and how the pigment is organized within the melanosome remains to be fully understood. In this review, we examine the current understanding of the initial chemical steps in the melanogenesis. Most natural melanins are mixtures of eumelanin and pheomelanin, and so after presenting the current understanding of the individual pigments, we focus on the mixed melanin systems, with a critical eye towards understanding how studies on individual melanin do and do not provide insight in the molecular aspects of their structures. We conclude the review with a discussion of important issues that must be addressed in future research efforts to more fully understand the relationship between molecular and functional properties of this important class of natural pigments.
Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of understanding of this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.