The diurnal occurrence of warm-season rainfall over the U.S. mainland is examined, particularly in light of forcings at multiple scales. The analysis is based on a radar dataset of 12-seasons duration covering the U.S. mainland from the Continental Divide eastward. The dataset resolves 2-km features at 15-min intervals, thus providing a detailed view of both large-and regional-scale diurnal patterns, as well as the statistics of events underlying these patterns. The results confirm recent findings with respect to the role of propagating rainfall systems and the high frequency at which these are excited by sensible heating over elevated terrain. Between the Rockies and the Appalachians, ϳ60% of midsummer rainfall occurs in this manner.Most rainfall in the central United States is nocturnal and may be attributed to the following three main forcings: 1) the passage of eastward-propagating rainfall systems with origins near the Continental Divide at 105°W; 2) a nocturnal reversal of the mountain-plains solenoid, which is associated with widespread ascent over the plains; and 3) the transport of energetic air and moisture convergence by the Great Plains low-level jet.Other features of interest include effects of the Appalachians, semidiurnal signals of regional significance, and the impact of breezes along the Gulf of Mexico. A modest effort was put forth to discern signals associated with El Niño and the Southern Oscillation. While tendencies in precipitation patterns are observed, the record is too short to draw conclusions of general significance.
ABSTRACT:The propagation and diurnal cycle of organized convection in northern tropical Africa are examined using five years (1999)(2000)(2001)(2002)(2003) of digital infrared imagery for May-August. Reduced-dimension techniques are used to document the properties of cold clouds -proxies for deep convection and precipitation. Large-scale environments are diagnosed from global analyses.Organized convection in Africa consists of coherent sequences or episodes which span an average distance of about 1000 km and last about 25 h. A substantial fraction of events exhibits systematic propagation at regional to continental scales while undergoing decay and regeneration. Episodes with 36 h duration and 1472 km span recur at a one-per-day interval. Most episodes have phase speed of 10-20 m s −1 , which is faster than most African easterly waves. Convective episodes tend to initiate in the lee of high terrain, consistent with thermal forcing from elevated heat sources. Average diurnal frequency maxima result from the superposition of local diurnal maximum with the delayed-phase arrival of systems propagating from the east. Propagation occurs with moderate low-to mid-tropospheric shear, which varies with the African easterly jet migration and West African monsoon phases. Frequent deep convection occurs with local shear maxima near high terrain. For the peak monsoon period and for 10°W-10°E, where easterly waves and convective systems are frequent, 35% of cold cloud episodes occur east of the wave trough compared with about 24% to the west. Based on the coherent behaviour of organized, propagating convection, inferences may be made regarding the prediction of precipitation beyond one or two days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.