Key Points• Thrombus formation and contraction alters local molecular transport, which regulates agonist distribution and platelet activation.• Semaphorin 4D contactdependent signaling increases platelet activation, but does not affect platelet packing or agonist transport.Hemostatic thrombi develop a characteristic architecture in which a core of highly activated platelets is covered by a shell of less-activated platelets. Here we have used a systems biology approach to examine the interrelationship of this architecture with transport rates and agonist distribution in the gaps between platelets. Studies were performed in mice using probes for platelet accumulation, packing density, and activation plus recently developed transport and thrombin activity probes. The results show that intrathrombus transport within the core is much slower than within the shell. The region of slowest transport coincides with the region of greatest packing density and thrombin activity, and appears prior to full platelet activation. Deleting the contact-dependent signaling molecule, Sema4D, delays platelet activation, but not the emergence of the low transport region. Collectively, these results suggest a timeline in which initial platelet accumulation and the narrowing gaps between platelets create a region of reduced transport that facilitates local thrombin accumulation and greater platelet activation, whereas faster transport rates within the shell help to limit thrombin accumulation and growth of the core. Thus, from a systems perspective, platelet accumulation produces an altered microenvironment that shapes thrombus architecture, which in turn affects agonist distribution and subsequent thrombus growth. (Blood. 2014;124(11):1808-1815 IntroductionThe hemostatic response balances the need to halt bleeding with the need to avoid inappropriate vascular occlusion. Recent reports of hemostatic thrombi formed in vivo have demonstrated that the extent of platelet activation within a growing thrombus is heterogeneous [1][2][3][4][5] and can result in a characteristic core-and-shell architecture. We have shown that the core region develops adjacent to the injury site and consists of fully activated, closely packed platelets that have undergone a-granule exocytosis, which allows them to be recognized by the appearance of the a-granule membrane protein, P-selectin, on their surface. 3 The shell is a less stable region that coats the core and consists of loosely packed, less activated platelets. 3Regional differences in the extent of platelet activation can potentially be driven by multiple factors. Here we have adopted a systems biology perspective, looking beyond the events in any one platelet to test the idea that the emerging architecture of the hemostatic response serves as both a driver and a reflection of differences in intrathrombus molecular transport rates and consequent differences in agonist distribution. Numerous platelet agonists are present during vascular injury, including collagen, thrombin, adenosine 59-diphosphate (ADP)...
Hemostatic thrombi formed after a penetrating injury have a distinctive structure in which a core of highly activated, closely packed platelets is covered by a shell of less-activated, loosely packed platelets. We have shown that differences in intrathrombus molecular transport emerge in parallel with regional differences in platelet packing density and predicted that these differences affect thrombus growth and stability. Here we test that prediction in a mouse vascular injury model. The studies use a novel method for measuring thrombus contraction in vivo and a previously characterized mouse line with a defect in integrin αIIbβ3 outside-in signaling that affects clot retraction ex vivo. The results show that the mutant mice have a defect in thrombus consolidation following vascular injury, resulting in an increase in intrathrombus transport rates and, as predicted by computational modeling, a decrease in thrombin activity and platelet activation in the thrombus core. Collectively, these data (1) demonstrate that in addition to the activation state of individual platelets, the physical properties of the accumulated mass of adherent platelets is critical in determining intrathrombus agonist distribution and platelet activation and (2) define a novel role for integrin signaling in the regulation of intrathrombus transport rates and localization of thrombin activity.
Heparin-induced thrombocytopenia (HIT) is an immune-mediated thrombocytopenic disorder associated with a severe prothrombotic state. We investigated whether neutrophils and neutrophil extracellular traps (NETs) contribute to the development of thrombosis in HIT. Using an endothelialized microfluidic system and a murine passive immunization model, we show that HIT induction leads to increased neutrophil adherence to venous endothelium. In HIT mice, endothelial adherence is enhanced immediately downstream of nascent venous thrombi, after which neutrophils undergo retrograde migration via a CXCR2-dependent mechanism to accumulate into the thrombi. Using a microfluidic system, we found that PF4 binds to NETs, leading them to become compact and DNase resistant. PF4-NET complexes selectively bind HIT antibodies, which further protect them from nuclease digestion. In HIT mice, inhibition of NET formation through Padi4 gene disruption or DNase treatment limited venous thrombus size. PAD4 inactivation did affect arterial thrombi or severity of thrombocytopenia in HIT. Thus, neutrophil activation contributes to the development of venous thrombosis in HIT by enhancing neutrophil-endothelial adhesion and neutrophil clot infiltration, where incorporated PF4-NET-HIT antibody complexes lead to thrombosis propagation. Inhibition of neutrophil endothelial adhesion, prevention of neutrophil chemokine-dependent recruitment of neutrophils to thrombi, or suppression of NET release should be explored as strategies to prevent venous thrombosis in HIT.
• Hindered diffusion becomes the dominant force of molecular movement in a thrombus.• The thrombus core acts as a selective molecular prison.Hemostatic thrombi formed after a penetrating injury have a heterogeneous architecture in which a core of highly activated, densely packed platelets is covered by a shell of lessactivated, loosely packed platelets. In the first manuscript in this series, we show that regional differences in intrathrombus protein transport rates emerge early in the hemostatic response and are preserved as the thrombus develops. Here, we use a theoretical approach to investigate this process and its impact on agonist distribution. The results suggest that hindered diffusion, rather than convection, is the dominant mechanism responsible for molecular movement within the thrombus. The analysis also suggests that the thrombus core, as compared with the shell, provides an environment for retaining soluble agonists such as thrombin, affecting the extent of platelet activation by establishing agonist-specific concentration gradients radiating from the site of injury. This analysis accounts for the observed weaker activation and relative instability of platelets in the shell and predicts that a failure to form a tightly packed thrombus core will limit thrombin accumulation, a prediction tested by analysis of data from mice with a defect in clot retraction. (Blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.