Published by Copernicus Publications on behalf of the European Geosciences Union. A. Baklanov et al.: Online coupled regional meteorology chemistry models in EuropeAbstract. Online coupled mesoscale meteorology atmospheric chemistry models have undergone a rapid evolution in recent years. Although mainly developed by the air quality modelling community, these models are also of interest for numerical weather prediction and regional climate modelling as they can consider not only the effects of meteorology on air quality, but also the potentially important effects of atmospheric composition on weather. Two ways of online coupling can be distinguished: online integrated and online access coupling. Online integrated models simulate meteorology and chemistry over the same grid in one model using one main time step for integration. Online access models use independent meteorology and chemistry modules that might even have different grids, but exchange meteorology and chemistry data on a regular and frequent basis. This article offers a comprehensive review of the current research status of online coupled meteorology and atmospheric chemistry modelling within Europe. Eighteen regional online coupled models developed or being used in Europe are described and compared. Topics discussed include a survey of processes relevant to the interactions between atmospheric physics, dynamics and composition; a brief overview of existing online mesoscale models and European model developments; an analysis on how feedback processes are treated in these models; numerical issues associated with coupled models; and several case studies and model performance evaluation methods. Finally, this article highlights selected scientific issues and emerging challenges that require proper consideration to improve the reliability and usability of these models for the three scientific communities: air quality, numerical meteorology modelling (including weather prediction) and climate modelling. This review will be of particular interest to model developers and users in all three fields as it presents a synthesis of scientific progress and provides recommendations for future research directions and priorities in the development, application and evaluation of online coupled models.
Abstract. We present a comparison between satellite-based TROPOMI (TROPOspheric Monitoring Instrument) NO2 products and ground-based observations in Helsinki (Finland). TROPOMI NO2 total (summed) columns are compared with the measurements performed by the Pandora spectrometer between April and September 2018. The mean relative and absolute bias between the TROPOMI and Pandora NO2 total columns is about 10 % and 0.12×1015 molec. cm−2 respectively. The dispersion of these differences (estimated as their standard deviation) is 2.2×1015 molec. cm−2. We find high correlation (r = 0.68) between satellite- and ground-based data, but also that TROPOMI total columns underestimate ground-based observations for relatively large Pandora NO2 total columns, corresponding to episodes of relatively elevated pollution. This is expected because of the relatively large size of the TROPOMI ground pixel (3.5×7 km) and the a priori used in the retrieval compared to the relatively small field-of-view of the Pandora instrument. On the other hand, TROPOMI slightly overestimates (within the retrieval uncertainties) relatively small NO2 total columns. Replacing the coarse a priori NO2 profiles with high-resolution profiles from the CAMS chemical transport model improves the agreement between TROPOMI and Pandora total columns for episodes of NO2 enhancement. When only the low values of NO2 total columns or the whole dataset are taken into account, the mean bias slightly increases. The change in bias remains mostly within the uncertainties. We also analyse the consistency between satellite-based data and in situ NO2 surface concentrations measured at the Helsinki–Kumpula air quality station (located a few metres from the Pandora spectrometer). We find similar day-to-day variability between TROPOMI, Pandora and in situ measurements, with NO2 enhancements observed during the same days. Both satellite- and ground-based data show a similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays as a result of reduced emissions from traffic and industrial activities (as expected in urban sites). The TROPOMI NO2 maps reveal also spatial features, such as the main traffic ways and the airport area, as well as the effect of the prevailing south-west wind patterns. This is one of the first works in which TROPOMI NO2 retrievals are validated against ground-based observations and the results provide an early evaluation of their applicability for monitoring pollution levels in urban sites. Overall, TROPOMI retrievals are valuable to complement the ground-based air quality data (available with high temporal resolution) for describing the spatio-temporal variability of NO2, even in a relatively small city like Helsinki.
Abstract. The development and application of chemistry transport models has a long tradition. Within the Netherlands the LOTOS-EUROS model has been developed by a consortium of institutes, after combining its independently developed predecessors in 2005. Recently, version 2.0 of the model was released as an open-source version. This paper presents the curriculum vitae of the model system, describing the model's history, model philosophy, basic features and a validation with EMEP stations for the new benchmark year 2012, and presents cases with the model's most recent and key developments. By setting the model developments in context and providing an outlook for directions for further development, the paper goes beyond the common model description.With an origin in ozone and sulfur modelling for the models LOTOS and EUROS, the application areas were gradually extended with persistent organic pollutants, reactive nitrogen, and primary and secondary particulate matter. After the combination of the models to LOTOS-EUROS in 2005, the model was further developed to include new source parametrizations (e.g. road resuspension, desert dust, wildfires), applied for operational smog forecasts in the Netherlands and Europe, and has been used for emission scenarios, source apportionment, and long-term hindcast and climate change scenarios. LOTOS-EUROS has been a front-runner in data assimilation of ground-based and satellite observations and has participated in many model intercomparison studies. The model is no longer confined to applications over Europe but is also applied to other regions of the world, e.g. China. The increasing interaction with emission experts has also contributed to the improvement of the model's performance. The philosophy for model development has always been to use knowledge that is state of the art and proven, to keep a good balance in the level of detail of process description and accuracy of input and output, and to keep a good record on the effect of model changes using benchmarking and validation. The performance of v2.0 with respect to EMEP observations is good, with spatial correlations around 0.8 or higher for concentrations and wet deposition. Temporal correlations are around 0.5 or higher. Recent innovative applications include source apportionment and data assimilation, particle number modelling, and energy transition scenarios including corresponding land use changes as well as Saharan dust forecasting. Future developments would enable more flexibility with respect to model horizontal and vertical resolution and further detailing of model input data.Published by Copernicus Publications on behalf of the European Geosciences Union.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.