At very high speeds, underwater bodies develop cavitation bubbles at the trailing edges of sharp corners or from contours where adverse pressure gradients are sufficient to induce flow separation. Coupled with a properly designed cavitator at the nose of a vehicle, this natural cavitation can be augmented with gas to induce a cavity to cover nearly the entire body of the vehicle. The formation of the cavity results in a significant reduction in drag on the vehicle and these so-called high-speed supercavitating vehicles (HSSVs) naturally operate at speeds in excess of 75 m s-1. The first part of this paper presents a derivation of a benchmark problem for control of HSSVs. The benchmark problem focuses exclusively on the pitch-plane dynamics of the body which currently appear to present the most severe challenges. A vehicle model is parametrized in terms of generic parameters of body radius, body length, and body density relative to the surrounding fluid. The forebody shape is assumed to be a right cylindrical cone and the aft two-thirds is assumed to be cylindrical. This effectively parametrizes the inertia characteristics of the body. Assuming the cavitator is a flat plate, control surface lift curves are specified relative to the cavitator effectiveness. A force model for a planing afterbody is also presented. The resulting model is generally unstable whenever in contact with the cavity and stable otherwise, provided the fin effectiveness is large enough. If it is assumed that a cavity separation sensor is not available or that the entire weight of the body is not to be carried on control surfaces, limit cycle oscillations generally result. The weight of the body inevitably forces the vehicle into contact with the cavity and the unstable mode; the body effectively skips on the cavity wall. The general motion can be characterized by switching between two nominally linear models and an external constant forcing function. Because of the extremely short duration of the cavity contact, direct suppression of the oscillations and stable planing appear to present severe challenges to the actuator designer. These challenges are investigated in the second half of the paper, along with several approaches to the design of active control systems.
This article discusses ongoing research investigating the feasibility of supporting an interoperability and integration framework to enable the digital thread, or an authoritative source of truth with current technology. The question that initiated this exploratory research was, “Is there current technology that can enable cross-domain digital artifact data sharing needed for the digital thread?” A thorough review and investigation of current state-of-the-art model-based systems engineering was performed by reviewing literature and performing multiple site visits and interviews with organizations at the forefront of digital engineering. After this initial investigation and review, a Semantic Web-enabled framework that would allow data in the thread to be captured, stored, transferred, checked for completeness and consistency, and changed under revision change control management began to be formed. This framework has gone through revisions. This paper reflects the most current demonstration of the framework and its capability of acquiring digital data, and parsing and querying the data using Semantic Web technology to generate a decision table that allows the decision data to be visualized. The article concludes with future demonstrations of the framework to further advance toward a framework that can enable a digital thread in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.