We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Bølling-Allerød (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition is caused by the superposition of climatic responses to the transient CO(2) forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot.
There is a close correspondence between regions with globally disappearing climates and previously identified biodiversity hotspots; for these regions, standard conservation solutions (e.g., assisted migration and networked reserves) may be insufficient to preserve biodiversity. biodiversity hotspots ͉ climate change ͉ dispersal limitations ͉ global-change ecology ͉ ecological surprises
The climates of Asia are affected significantly by the extent and height of the Himalayan mountains and the Tibetan plateau. Uplift of this region began about 50 Myr ago, and further significant increases in altitude of the Tibetan plateau are thought to have occurred about 10-8 Myr ago, or more recently. However, the climatic consequences of this uplift remain unclear. Here we use records of aeolian sediments from China and marine sediments from the Indian and North Pacific oceans to identify three stages of evolution of Asian climates: first, enhanced aridity in the Asian interior and onset of the Indian and east Asian monsoons, about 9-8 Myr ago; next, continued intensification of the east Asian summer and winter monsoons, together with increased dust transport to the North Pacific Ocean, about 3.6-2.6 Myr ago; and last, increased variability and possible weakening of the Indian and east Asian summer monsoons and continued strengthening of the east Asian winter monsoon since about 2.6 Myr ago. The results of a numerical climate-model experiment, using idealized stepwise increases of mountain-plateau elevation, support the argument that the stages in evolution of Asian monsoons are linked to phases of Himalaya-Tibetan plateau uplift and to Northern Hemisphere glaciation.
Climate over the past million years has been dominated by glaciation cycles with periods near 23,000, 41,000, and 100,000 years. In a linear version of the Milankovitch theory, the two shorter cycles can be explained as responses to insolation cycles driven by precession and obliquity. But the 100,000-year radiation cycle (arising from eccentricity variation) is much too small in amplitude and too late in phase to produce the corresponding climate cycle by direct forcing. We present phase observations showing that the geographic progression of local responses over the 100,000-year cycle is similar to the progression in the other two cycles, implying that a similar set of internal climatic mechanisms operates in all three. But the phase sequence in the 100,000-year cycle requires a source of climatic inertia having a time constant (--15,000 years) much larger than the other cycles (--5,000 years). Our conceptual model identifies massive northern hemisphere ice sheets as this larger inertial source. When these ice sheets, forced by precession and obliquity, exceed a critical size, they cease responding as linear Milankovitch slaves and drive atmospheric and oceanic responses that mimic the externally forced responses. In our model, the coupled system acts as a nonlinear amplifier that is particularly sensitive to eccentricity-driven modulations in the 23,000-year sea level cycle. During an interval when sea level is forced upward from a major low stand by a Milankovitch response acting either alone or in combination with an internally driven, higher-frequency process, ice sheets grounded on continental shelves become unstable, mass wasting accelerates, and the resulting deglaciation sets the phase of one wave in the train of 100,000-year oscillations.Whether a glacier or ice sheet influences the climate depends very much on the scale .... The interesting aspect is that an effect on the local climate can still make an ice mass grow larger and larger, thereby gradually increasing its radius of influence. Johannes Oerlemans [1991, p. 155] 1. BACKGROUND AND PURPOSE Climate over the past half-million years has been dominated by glacial cycles with periods near 23, 41, and 100 kyr [Hays 14 DSDP607 A•5•3C index of ventilation 3427
Time series of ocean properties provide a measure of global ice volume and monitor key features of the wind-driven and density-driven circulations over the past 400,000 years. Cycles with periods near 23,000, 41,000, and 100,000 years dominate this climatic narrative. When the narrative is examined in a geographic array of time series, the phase of each climatic oscillation is seen to progress through the system in essentially the same geographic sequence in all three cycles. We argue that Paper number 92PA02253 0883-8305/92/92PA-02253510.00 the 23,000-and 41,000-year cycles of glaciation are continuous, linear responses to orbitally driven changes in the Arctic radiation budget; and we use the phase progression in each climatic cycle to identify the main pathways along which the initial, local responses to radiation are propagated by the atmosphere and ocean. Early in this progression, deep waters of the Southern Ocean appear to act as a carbon trap. To stimulate new observations and modeling efforts, we offer a process model that gives a synoptic view of climate at the four end-member states needed to describe the system's evolution, and we propose a dynamic system model that explains the phase progression along causal pathways by specifying inertial constants in a chain of four subsystems. "Solutions to problems involving systems of such complexity are not born full grown like Athena from the head of Zeus. Rather they evolve slowly, in stages, each of which requires a pause to examine data at great lengths in order to guarantee a sure footing and to properly choose the next step." --Victor P. Starr Imbrie et al.' Linear Responses to Milankovitch Forcing 705 MODEL SYSTEM STATE IG G IG 1 3 PHASE © DG PG 1 4 3 2 TIME
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.