We describe a new on-line chromium reduction technique for the measurement of stable hydrogen (deltaD) isotopes in waters using continuous-flow isotope ratio mass spectrometry. The on-line Cr reduction method has low intersample memory effects (< 1%) and excellent precision and accuracy for deltaD (+/-0.5% and was used to analyze waters samples as small as 50 nL. The on-line Cr method has a number of significant advantages over conventional offline Zn and U reduction and on-line carbon-based pyrolysis techniques. A single Cr reactor can be used to analyze approximately 1,000 water samples using an injection volume of 0.5 microL, with an individual sample analysis time of 4 min. Intersample memory effects are negligible. The Cr reactor temperature of 1050 degree C is easily attainable on standard elemental analyzers and so does not require the specialized and costly high-temperature furnaces of carbon-based pyrolysis reactors. Furthermore, hydrogen isotopes in extremely small water samples in the 100-nL range or less can be easily measured; hence, this new method opens up a number of exciting application areas in earth and environmental sciences, for example, natural abundance deltaD measurements of individual fluid inclusions in geologic materials using a laser source and measurements of body fluids in physiological and metabolic research.
A high-precision, and rapid on-line method for oxygen isotope analysis of silver phosphate is presented. The technique uses high-temperature elemental analyzer (EA)-pyrolysis interfaced in continuous flow (CF) mode to an isotopic ratio mass spectrometer (IRMS). Calibration curves were generated by synthesizing silver phosphate with a 13 per thousand spread in delta(18)O values. Calibration materials were obtained by reacting dissolved potassium dihydrogen phosphate (KH(2)PO(4)) with water samples of various oxygen isotope compositions at 373 K. Validity of the method was tested by comparing the on-line results with those obtained by classical off-line sample preparation and dual inlet isotope measurement. In addition, silver phosphate precipitates were prepared from a collection of biogenic apatites with known delta(18)O values ranging from 12.8 to 29.9 per thousand (V-SMOW). Reproducibility of +/- 0.2 per thousand was obtained by the EA-Py-CF-IRMS method for sample sizes in the range 400-500 microg. Both natural and synthetic samples are remarkably well correlated with conventional (18)O/(16)O determinations. Silver phosphate is a very stable material and easy to degas and, thus, could be considered as a good candidate to become a reference material for the determination of (18)O/(16)O ratios of phosphate by high-temperature pyrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.