ABSTRACT:The dietary polyphenol resveratrol has been shown to have chemopreventive activity against cardiovascular disease and a variety of cancers in model systems, but it is not clear whether the drug reaches the proposed sites of action in vivo after oral ingestion, especially in humans. In this study, we examined the absorption, bioavailability, and metabolism of 14 C-resveratrol after oral and i.v.doses in six human volunteers. The absorption of a dietary relevant 25-mg oral dose was at least 70%, with peak plasma levels of resveratrol and metabolites of 491 ؎ 90 ng/ml (about 2 M) and a plasma half-life of 9.2 ؎ 0.6 h. However, only trace amounts of unchanged resveratrol (<5 ng/ml) could be detected in plasma.Most of the oral dose was recovered in urine, and liquid chromatography/mass spectrometry analysis identified three metabolic pathways, i.e., sulfate and glucuronic acid conjugation of the phenolic groups and, interestingly, hydrogenation of the aliphatic double bond, the latter likely produced by the intestinal microflora. Extremely rapid sulfate conjugation by the intestine/liver appears to be the rate-limiting step in resveratrol's bioavailability. Although the systemic bioavailability of resveratrol is very low, accumulation of resveratrol in epithelial cells along the aerodigestive tract and potentially active resveratrol metabolites may still produce cancerpreventive and other effects.
Regeneration of 11-cis retinal from all-trans retinol in the retinal pigment epithelium (RPE) is a critical step in the visual cycle. The enzyme(s) involved in this isomerization process has not been identified and both all-trans retinol and all-trans retinyl esters have been proposed as the substrate. This study is to determine the substrate of the isomerase enzyme or enzymatic complex. Incubation of bovine RPE microsomes with all-trans [(3)H]-retinol generated both retinyl esters and 11-cis retinol. Inhibition of lecithin retinol acyltransferase (LRAT) with 10-N-acetamidodecyl chloromethyl ketone (AcDCMK) or cellular retinol-binding protein I (CRBP) diminished the generation of both retinyl esters and 11-cis retinol from all-trans retinol. The 11-cis retinol production correlated with the retinyl ester levels, but not with the all-trans retinol levels in the reaction mixture. When retinyl esters were allowed to form prior to the addition of the LRAT inhibitors, a significant amount of isomerization product was generated. Incubation of all-trans [(3)H]-retinyl palmitate with RPE microsomes generated 11-cis retinol without any detectable production of all-trans retinol. The RPE65 knockout (Rpe65(-/-)) mouse eyecup lacks the isomerase activity, but LRAT activity remains the same as that in the wild-type (WT) mice. Retinyl esters in WT mice plateau at 8 weeks-of-age, but Rpe65(-/-) mice continue to accumulate retinyl esters with age (e.g., at 36 weeks, the levels are 20x that of WT). Our data indicate that the retinyl esters are the substrate of the isomerization reaction.
Primaquine is an important antimalarial agent because of its activity against exoerythrocytic forms of Plasmodium spp. Methemoglobinemia and hemolytic anemia, however, are dose-limiting side effects of primaquine therapy. These hemotoxic effects are believed to be mediated by metabolites, although the identity of the toxic specie(s) and the mechanism underlying hemotoxicity have remained unclear. Previous studies showed that an N-hydroxylated metabolite of primaquine, 6-methoxy-8-hydroxylaminoquinoline, was capable of mediating primaquine-induced hemotoxicity. The present studies were undertaken to investigate the hemolytic potential of 5-hydroxyprimaquine (5-HPQ), a phenolic metabolite that has been detected in experimental animals. 5-HPQ was synthesized, isolated by flash chromatography, and characterized by NMR spectroscopy and mass spectrometry. In vitro exposure of 51 Cr-labeled erythrocytes to 5-HPQ induced a concentration-dependent decrease in erythrocyte survival (TC 50 of ca. 40 M) when the exposed cells were returned to the circulation of isologous rats. 5-HPQ also induced methemoglobin formation and depletion of glutathione (GSH) when incubated with suspensions of rat erythrocytes. Furthermore, when red cell GSH was depleted (Ͼ95%) by titration with diethyl maleate to mimic GSH instability in human glucose-6-phosphate dehydrogenase deficiency, a 5-fold enhancement of hemolytic activity was observed. These data indicate that 5-HPQ also has the requisite properties to contribute to the hemotoxicity of primaquine. The relative contribution of N-hydroxy versus phenolic metabolites to the overall hemotoxicity of primaquine remains to be assessed.
Deactivation of the visual cascade is initiated by the phosphorylation of rhodopsin. We report here identification of the two major sites of phosphorylation in bleached bovine rhodopsin using tandem mass spectrometry in conjunction with synthetic phosphopeptide standards. Both bleached and unbleached rod outer segments were cleaved with endoproteinase Asp-N to release the C-terminal fragment, residues 330-348, containing seven potential sites of phosphorylation. High-performance liquid chromatographic separation of soluble cleavage products from both unbleached and bleached rod outer segments gave a peak which was identified by tandem mass spectrometry and comparison to synthetic standards as monophosphorylated (serine 338) DDEASTTVSKTETSQVAPA. Present only in the chromatogram of bleached ROS were two peaks identified as monophosphorylated (serine 343) and diphosphorylated (serines 338 and 343) derivatives of DDEASTTVSKTETSQVAPA. These results identify serines 338 and 343 as the major sites of phosphorylation within the C-terminal region of bleached bovine rhodopsin and constitute the first example of mass spectrometric characterization of phosphorylation sites in a G-protein coupled receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.