A photovoltaic conversion efficiency of 40.8% at 326 suns concentration is demonstrated in a monolithically grown, triple-junction III–V solar cell structure in which each active junction is composed of an alloy with a different lattice constant chosen to maximize the theoretical efficiency. The semiconductor structure was grown by organometallic vapor phase epitaxy in an inverted configuration with a 1.83 eV Ga.51In.49P top junction lattice-matched to the GaAs substrate, a metamorphic 1.34 eV In.04Ga.96As middle junction, and a metamorphic 0.89 eV In.37Ga.63As bottom junction. The two metamorphic junctions contained approximately 1×105 cm−2 and 2–3×106 cm−2 threading dislocations, respectively.
The self-absorption of radiated photons increases the minority carrier concentration in semiconductor optoelectronic devices such as solar cells. This so-called photon recycling leads to an increase in the external luminescent efficiency, the fraction of internally radiated photons that are able to escape through the front surface. An increased external luminescent efficiency in turn correlates with an increased open-circuit voltage and ultimately conversion efficiency. We develop a detailed ray-optical model that calculates Voc for real, non-idealized solar cells, accounting for isotropic luminescence, parasitic losses, multiple photon reflections within the cell and wavelength-dependent indices of refraction for the layers in the cell. We have fabricated high quality GaAs solar cells, systematically varying the optical properties including the back reflectance, and have demonstrated Voc = 1.101 ± 0.002 V and conversion efficiencies of (27.8 ± 0.8)% under the global solar spectrum. The trends shown by the model are in good agreement with the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.