The 37-kDa protein annexin 1 (Anx-1; lipocortin 1) has been implicated in the regulation of phagocytosis, cell signaling, and proliferation and is postulated to be a mediator of glucocorticoid action in inflammation and in the control of anterior pituitary hormone release. Here, we report that mice lacking the Anx-1 gene exhibit a complex phenotype that includes an altered expression of other annexins as well as of COX-2 and cPLA2. In carrageenin- or zymosan-induced inflammation, Anx-1-/- mice exhibit an exaggerated response to the stimuli characterized by an increase in leukocyte emigration and IL-1beta generation and a partial or complete resistance to the antiinflammatory effects of glucocorticoids. Anx-1-/- polymorphonuclear leucocytes exhibited increased spontaneous migratory behavior in vivo whereas in vitro, leukocytes from Anx-1-/- mice had reduced cell surface CD 11b (MAC-1) but enhanced CD62L (L-selectin) expression and Anx-1-/- macrophages exhibited anomalies in phagocytosis. There are also gender differences in activated leukocyte behavior in the Anx-1-/- mice that are not seen in the wild-type animals, suggesting an interaction between sex hormones and inflammation in Anx-1-/- animals.
Aims/hypothesis Defects in pancreatic beta cell turnover are implicated in the pathogenesis of type 2 diabetes by genetic markers for diabetes. Decreased beta cell neogenesis could contribute to diabetes. The longevity and turnover of human beta cells is unknown; in rodents <1 year old, a half-life of 30 days is estimated. Intracellular lipofuscin body (LB) accumulation is a hallmark of ageing in neurons. To estimate the lifespan of human beta cells, we measured beta cell LB accumulation in individuals aged 1-81 years. Methods LB content was determined by electron microscopical morphometry in sections of beta cells from human (nondiabetic, n=45; type 2 diabetic, n=10) and non-human primates (n=10; 5-30 years) and from 15 mice aged 10-99 weeks. Total cellular LB content was estimated by threedimensional (3D) mathematical modelling. Results LB area proportion was significantly correlated with age in human and non-human primates. The proportion of human LB-positive beta cells was significantly related to age, with no apparent differences in type 2 diabetes or obesity. LB content was low in human insulinomas (n=5) and alpha cells and in mouse beta cells (LB content in mouse <10% human). Using 3D electron microscopy and 3D mathematical modelling, the LB-positive human beta cells (representing aged cells) increased from ≥90% (<10 years) to ≥97% (>20 years) and remained constant thereafter. Conclusions/interpretation Human beta cells, unlike those of young rodents, are long-lived. LB proportions in type 2 diabetes and obesity suggest that little adaptive change occurs in the adult human beta cell population, which is largely established by age 20 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.