Tendon inserts into bone via a fibrocartilaginous interface (enthesis) that reduces mechanical strain and tissue failure. Despite this toughening mechanism, tears occur because of acute (overload) or degradative (aging) processes. Surgically fixating torn tendon into bone results in the formation of a scar tissue interface with inferior biomechanical properties. Progress toward enthesis regeneration requires biomaterial approaches to protect cells from high levels of interfacial strain. We report an innovative tissue reinforcement strategy: a stratified scaffold containing osseous and tendinous tissue compartments attached through a continuous polyethylene glycol (PEG) hydrogel interface. Tuning the gelation kinetics of the hydrogel modulates integration with the flanking compartments and yields biomechanical performance advantages. Notably, the hydrogel interface reduces formation of strain concentrations between tissue compartments in conventional stratified biomaterials that can have deleterious biological effects. This design of mechanically robust stratified composite biomaterials may be appropriate for a broad range of tendon and ligament-to-bone insertions.
In a 30-day porcine stent model, pimecrolimus inhibits neointimal proliferation as compared with bare metal stents. Also, the proof of concept of a dual drug eluting stent was established showing both safety and efficacy.
Synthesis of distributed compliant mechanisms is often a two-stage process involving (a) conceptual topology synthesis, and a subsequent (b) refinement stage to meet stress and manufacturing specifications. The usefulness of a solution is ascertained only after the sequential completion of these two steps, which are in general computationally intensive. This paper presents a strategy to rapidly estimate final operating stresses even before the actual refinement process. This strategy is based on the uniform stress distribution metric, and a functional characterization of the different members that constitute the compliant mechanism topology. It enables selecting the best conceptual solution for further optimization, thus maximally avoiding refinement of topologies that inherently may not meet the stress constraints. Furthermore this strategy enables modifying topologies at the early design stage to meet final stress specifications, thus greatly accelerating the overall synthesis process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.