We propose a simple and efficient technique capable of generating Fourier phase only holograms with a reconstruction quality similar to the results obtained with the Gerchberg-Saxton (G-S) algorithm. Our proposal is to use the traditional G-S algorithm to optimize a random phase pattern for the resolution, pixel size, and target size of the general optical system without any specific amplitude data. This produces an optimized random phase (ORAP), which is used for fast generation of phase only holograms of arbitrary amplitude targets. This ORAP needs to be generated only once for a given optical system, avoiding the need for costly iterative algorithms for each new target. We show numerical and experimental results confirming the validity of the proposal.
We propose for the first time, to the best of our knowledge, the use of optimized random phases (ORAPs) in a double random phase encryption scheme (DRPE). In DRPE schemes the convolution between two random phase functions encrypts the information to be secured. However, in actual encryption applications, this convolution of random phases also results in unwanted effects like speckle noise. In this Letter we show that under certain conditions this noise can be drastically reduced. These conditions can be easily achieved by using ORAPs. These ORAPs, besides containing information about the parameters of the optical system and maintaining all the security properties of a random phase function, ensure that the encrypted data is a phase-only function. This leads to a great increase in system performance, with decryption quality similar to the reconstruction of a phase-only hologram generated with the Gerchberg-Saxton algorithm. We show both numerical and experimental results confirming the validity of our proposal.
We present a new compact scheme to ensure high performance optical encryption. In this scheme, the encrypted data and the security key are recorded without need for a reference arm, resulting in a significant decrease in the size and complexity of the cryptosystem. The efficacy of the compact scheme to protect data is verified by encrypting and decrypting different inputs. We also test the resistance to both random noise and data loss. Additionally, the potential of the system is evaluated by encoding the data to be encrypted by means of a customized data container. In this way, we achieve a data volume reduction of 97% for the encrypted data while allowing for noise-free information recovery using the proposed cryptosystem. We experimentally demonstrate both encryption and volume reduction, confirming the validity and applicability of our proposal.
We introduce for the first time, to the best of our knowledge, a three-dimensional experimental joint transform correlator (JTC) cryptosystem allowing the encryption of information for any 3D object, and as an additional novel feature, a second 3D object plays the role of the encoding key. While the JTC architecture is normally used to process 2D data, in this work, we envisage a technique that allows the use of this architecture to protect 3D data. The encrypted object information is contained in the joint power spectrum. We register the key object as a digital off-axis Fourier hologram. The encryption procedure is done optically, while the decryption is carried out by means of a virtual optical system, allowing for flexible implementation of the proposal. We present experimental results to demonstrate the validity and feasibility of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.