Neurodegeneration is one of the greatest public health challenges for the 21st century. Among neurodegenerative diseases, Alzheimer's disease (AD) is the most prevalent and best characterized. Nevertheless, despite the large investment in AD research, currently there is no effective therapeutic option. In the present review, we highlight a novel alternative, which takes advantage of the biotechnological outbreak deployed by the discovery of the RNA interference-based gene silencing mechanism, and its application as a tool for neurodegeneration treatment. Here, we highlight cyclin-dependent kinase 5 (CDK5) as a key candidate target for therapeutic gene silencing. Unlike other members of the cyclin-dependent kinase family, CDK5 does not seem to play a crucial role in cell cycle regulation. By contrast, CDK5 participates in multiple functions during nervous system development and has been established as a key mediator of Tau hyperphosphorylation and neurofibrillary pathology, thus serving as an optimal candidate for targeted therapy in the adult nervous system. We propose that the use of RNA interference for CDK5 silencing presents an attractive and specific therapeutic alternative for AD and perhaps against other tauopathies.
The cytoskeleton is the main intracellular structure that determines the morphology of neurons and maintains their integrity. Therefore, disruption of its structure and function may underlie several neurodegenerative diseases. This review summarizes the current literature on the tau protein, microtubule-associated protein 2 (MAP2) and neurofilaments as common denominators in pathological conditions such as Alzheimer's disease (AD), cerebral ischemia, and multiple sclerosis (MS). Insights obtained from experimental models using biochemical and immunocytochemical techniques highlight that changes in these proteins may be potentially used as protein targets in clinical settings, which provides novel opportunities for the detection, monitoring and treatment of patients with these neurodegenerative diseases.
Contents1. Introduction 2. Cytoskeletal damage and neurodegeneration 3. Alzheimer's disease 4. Cerebral ischemia 5. Multiple sclerosis 6. Conclusions
Currently there exists increasing preoccupation concerning sexual and reproductive health among teenagers; in spite of the availability of different contraceptive methods, the number of undesired pregnancies is steadily increasing. Among the products presently available for birth control, spermicides are a means that can be totally controlled by the woman and are very reliable compared to other contraceptives in common use. However, they cause irritation in the vaginal epithelium due to their tensoactive effect on cellular membranes which might enhance the risk of acquiring sexually transmissible diseases. In searching for new alternatives, it was observed that a wide variety of plants have spermicidal activity. Hence it is interesting to consider potential contraceptives of vegetable origin, as they may constitute a key tool to prevent undesired pregnancies in general, and in particular in vulnerable groups such as teenagers and young women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.