The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream.In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus, surface water habitats may extend under riparian vegetation, and terrestrial groundwater habitats may be found beneath the stream channel.
The influence of hydrogeologic setting on the susceptibility of streams to legacy nitrate was examined at seven study sites having a wide range of base flow index (BFI) values. BFI is the ratio of base flow to total streamflow volume. The portion of annual stream nitrate loads from base flow was strongly correlated with BFI. Furthermore, dissolved oxygen concentrations in streambed pore water were significantly higher in high BFI watersheds than in low BFI watersheds suggesting that geochemical conditions favor nitrate transport through the bed when BFI is high. Results from a groundwater-surface water interaction study at a high BFI watershed indicate that decades old nitrate-laden water is discharging to this stream. These findings indicate that high nitrate levels in this stream may be sustained for decades to come regardless of current practices. It is hypothesized that a first approximation of stream vulnerability to legacy nutrients may be made by geospatial analysis of watersheds with high nitrogen inputs and a strong connection to groundwater (e.g., high BFI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.