In monkeys, dogs and swine (six each) we tested the reduction of the isoflurane MAC (minimal alveolar concentration) produced by 2 mg.kg-1 morphine intravenously (i.v.) and the concurrent effect on PCO2 with spontaneous ventilation. MAC fell to a minimum of 55% of control at 53 min in monkeys, 50% at 38 min in dogs and 13% at 33 min in swine. PaCO2 rose at constant MAC with morphine to 55-60 mmHg, but did not fall over the next several hours despite the decline of plasma morphine concentration, and the resulting needed rise in isoflurane concentration to keep the anaesthesia depth at 1 MAC. After isoflurane concentration had returned to pre-morphine control levels, naloxone immediately reduced PaCO2 to or below control level. Morphine pharmacokinetics in the three species studied conformed to a two-compartment model.
Our results do not support routine clinical use of MOR administered IV at dosages of 0.25 or 2.0 mg/kg as an adjuvant to anesthesia in horses administered ISO.
Prone maximal restraint position (PMRP, also known as hogtie or hobble) is often used by law enforcement and prehospital personnel on violent combative individuals in the field setting. Weight force is often applied to the restrained individual's back and torso during the restraint process. We sought to determine the effect of 25 and 50 lbs weight force on respiratory function in human subject volunteers placed in the PMRP. We performed a randomized, cross-over, controlled trial on 10 subjects placed in 4 positions for 5 minutes each: sitting, PRMP, PRMP with 25 lbs weight force (PMRP+25), and PRMP with 50 lbs weight force placed on the back (PMRP+50). We measure pulse oximetry, end-tidal CO2 levels, and forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1). FVC and FEV1 were significantly lower in all restraint positions compared with sitting but not significantly different between restraint positions with and without weight force. Moreover, mean oxygen saturation levels were above 95% and mean end-tidal CO2 levels were below 45 mm Hg for all positions. We conclude that PMRP with and without 25 and 50 lbs of weight force resulted in a restrictive pulmonary function pattern but no evidence of hypoxia or hypoventilation.
Behavioral and electrophysiological methods were used to investigate the hyperalgesia and allodynia, and functional changes in lumbar spinal dorsal horn neurons, in a model of neuropathic pain (Selzer et al. 1990) involving ligation of one-third to one-half of one sciatic nerve in rats. One and 5 weeks following ligation, there was a significant reduction in hind limb withdrawal latency to noxious radiant heat on the operated side and, to a lesser degree, on the unoperated side. By 16 weeks, heat withdrawal latencies were reduced about equally (approximately 40%) on both sides. Withdrawal threshold to mechanical pressure was markedly reduced within 1 week on the operated side, and decreased in a time-dependent manner on the unoperated side. Heat withdrawal latency and von Frey withdrawal thresholds were not significantly affected in sham-operated rats. The same rats were tested in a paradigm measuring the isometric force of hind limb withdrawals elicited by graded noxious contact heat stimuli (38-52 degrees C, 5 sec). Withdrawal force increased monotonically with stimulus temperature starting at a threshold of approximately 40 degrees C. Stimulus-response functions were not significantly different between a sham-operated group and groups tested 5 (acute) and 16 weeks (chronic) after partial sciatic nerve ligation. Following behavioral testing, the animals were deeply anesthetized with pentobarbital sodium to allow electrophysiological recording of responses of single lumbar dorsal horn wide-dynamic range-type neurons to mechanical and noxious thermal stimulation of the hind paw. Recordings were made from 6 sham-operated rats (26 neurons ipsilateral and 31 contralateral to the operated leg), from 7 rats receiving partial sciatic nerve ligation 5 weeks previously (29 ipsilateral and 29 contralateral to ligation), and from 7 rats receiving partial sciatic ligation 16 weeks previously (18 ipsilateral, 29 contralateral to ligation). In several ligated rats we were unable to find heat-responsive neurons with cutaneous receptive fields on the hind paw ipsilateral to the ligation. For the neurons that were sensitive to heat, responses increased monotonically from a threshold of 40-42 degrees C. Neuronal stimulus-response functions for heat were not significantly different between ipsi- and contralateral (to operated) sides in the sham, 5-week or 16-week post-ligation groups, or between sham and 5- or 16-week post-ligation groups. Mechanical receptive field areas were not significantly different between ipsi- and contralateral sides in the sham and 5-week post-ligation groups, or between sham and 5-week post-ligation groups. However, receptive field areas were significantly larger in the 16-week post-ligation group (both ipsi- and contralateral to ligation) compared to sham and 5-week post-ligation groups. The results suggest that allodynia may be associated with a chronic enhancement of neuronal mechanosensitivity, but that the thermal hyperalgesia is not associated with enhanced neuronal responsiveness or force of withd...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.