Now entering its eighth year, the Annual Computer Poker Competition (ACPC) is the premier event within the field of computer poker. With both academic and nonacademic competitors from around the world, the competition provides an open and international venue for benchmarking computer poker agents. We describe the competition’s origins and evolution, current events, and winning techniques.
Multi-agent decision problems can often be formulated as extensive-form games. We focus on imperfect information extensive-form games in which one or more actions at many decision points have an associated continuous or many-valued parameter. A stock trading agent, in addition to deciding whether to buy or not, must decide how much to buy. In no-limit poker, in addition to selecting a probability for each action, the agent must decide how much to bet for each betting action. Selecting values for these parameters makes these games extremely large. Two-player no-limit Texas Hold'em poker with stacks of 500 big blinds has approximately 1071 states, which is more than 1050 times more states than two-player limit Texas Hold'em. The main contribution of this paper is a technique that abstracts a game's action space by selecting one, or a small number, of the many values for each parameter. We show that strategies computed using this new algorithm for no-limit Leduc poker exhibit significant utility gains over epsilon-Nash equilibrium strategies computed with standard, hand-crafted parameter value abstractions.
In extensive-form games with a large number of actions, careful abstraction of the action space is critically important to performance. In this paper we extend previous work on action abstraction using no-limit poker games as our test domains. We show that in such games it is no longer necessary to choose, a priori, one specific range of possible bet sizes. We introduce an algorithm that adjusts the range of bet sizes considered for each bet individually in an iterative fashion. This flexibility results in a substantially improved game value in no-limit Leduc poker. When applied to no-limit Texas Hold'em our algorithm produces an action abstraction that is about one third the size of a state of the art hand-crafted action abstraction, yet has a better overall game value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.