Large-scale genomics has enabled proteomics by creating sequence infrastructures that can be used with mass spectrometry data to identify proteins. Although protein sequences can be deduced from nucleotide sequences, posttranslational modifications to proteins, in general, cannot. We describe a process for the analysis of posttranslational modifications that is simple, robust, general, and can be applied to complicated protein mixtures. A protein or protein mixture is digested by using three different enzymes: one that cleaves in a site-specific manner and two others that cleave nonspecifically. The mixture of peptides is separated by multidimensional liquid chromatography and analyzed by a tandem mass spectrometer. This approach has been applied to modification analyses of proteins in a simple protein mixture, Cdc2p protein complexes isolated through the use of an affinity tag, and lens tissue from a patient with congenital cataracts. Phosphorylation sites have been detected with known stoichiometry of as low as 10%. Eighteen sites of four different types of modification have been detected on three of the five proteins in a simple mixture, three of which were previously unreported. Three proteins from Cdc2p isolated complexes yielded eight sites containing three different types of modifications. In the lens tissue, 270 proteins were identified, and 11 different crystallins were found to contain a total of 73 sites of modification. Modifications identified in the crystallin proteins included Ser, Thr, and Tyr phosphorylation, Arg and Lys methylation, Lys acetylation, and Met, Tyr, and Trp oxidations. The method presented will be useful in discovering co-and posttranslational modifications of proteins.
. (1999) 'The cardiomyopathy and lens cataract mutation in B-crystallin alters its protein structure, chaperone activity, and interaction withintermediate laments in vitro.', Journal of biological chemistry., 274 (47). pp. 33235-33243. Further information on publisher's website: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
Expansion of a CTG trinucleotide repeat in the 3' UTR of the gene DMPK at the DM1 locus on chromosome 19 causes myotonic dystrophy, a dominantly inherited disease characterized by skeletal muscle dystrophy and myotonia, cataracts and cardiac conduction defects. Targeted deletion of Dm15, the mouse orthologue of human DMPK, produced mice with a mild myopathy and cardiac conduction abnormalities, but without other features of myotonic dystrophy, such as myotonia and cataracts. We, and others, have demonstrated that repeat expansion decreases expression of the adjacent gene SIX5 (refs 7,8), which encodes a homeodomain transcription factor. To determine whether SIX5 deficiency contributes to the myotonic dystrophy phenotype, we disrupted mouse Six5 by replacing the first exon with a beta-galactosidase reporter. Six5-mutant mice showed reporter expression in multiple tissues, including the developing lens. Homozygous mutant mice had no apparent abnormalities of skeletal muscle function, but developed lenticular opacities at a higher rate than controls. Our results suggest that SIX5 deficiency contributes to the cataract phenotype in myotonic dystrophy, and that myotonic dystrophy represents a multigenic disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.