The innate immune response to viral pathogens is critical in order to mobilize protective immunity. Cells of the innate immune system detect viral infection largely through germline-encoded pattern recognition receptors (PRRs) present either on the cell surface or within distinct intracellular compartments. These include the Toll-like receptors (TLRs), the retinoic acid-inducble gene I-like receptors (RLRs), the nucleotide oligomerization domain-like receptors (NLRs, also called NACHT, LRR and PYD domain proteins) and cytosolic DNA sensors. While in certain cases viral proteins are the trigger of these receptors, the predominant viral activators are nucleic acids. The presence of viral sensing PRRs in multiple cellular compartments allows innate cells to recognize and quickly respond to a broad range of viruses, which replicate in different cellular compartments. Here, we review the role of PRRs and associated signaling pathways in detecting viral pathogens in order to evoke production of interferons and cytokines. By highlighting recent progress in these areas, we hope to convey a greater understanding of how viruses activate PRR signaling and how this interaction shapes the anti-viral immune response.
Background-When challenged with extracellular fluid shear stress, vascular endothelial cells are known to release nitric oxide, an important vasodilator. Here, we show that the ability of cultured endothelial cells to sense a low range of fluid shear depends on apical membrane organelles, called cilia, and that cilia are compartments required for proper localization and function of the mechanosensitive polycystin-1 molecule.
Methods and Results-Cells with the Pkd1null/null or Tg737 orpk/orpk mutation encoded for polycystin-1 or polaris, respectively, are unable to transmit extracellular shear stress into intracellular calcium signaling and biochemical nitric oxide synthesis. Cytosolic calcium and nitric oxide recordings further show that fluid shear sensing is a cilia-specific mechanism because other mechanical or pharmacological stimulation does not abolish calcium and nitric oxide signaling in polycystin-1 and polaris mutant endothelial cells. Polycystin-1 localized in the basal body of Tg737
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.