The innate immune response to viral pathogens is critical in order to mobilize protective immunity. Cells of the innate immune system detect viral infection largely through germline-encoded pattern recognition receptors (PRRs) present either on the cell surface or within distinct intracellular compartments. These include the Toll-like receptors (TLRs), the retinoic acid-inducble gene I-like receptors (RLRs), the nucleotide oligomerization domain-like receptors (NLRs, also called NACHT, LRR and PYD domain proteins) and cytosolic DNA sensors. While in certain cases viral proteins are the trigger of these receptors, the predominant viral activators are nucleic acids. The presence of viral sensing PRRs in multiple cellular compartments allows innate cells to recognize and quickly respond to a broad range of viruses, which replicate in different cellular compartments. Here, we review the role of PRRs and associated signaling pathways in detecting viral pathogens in order to evoke production of interferons and cytokines. By highlighting recent progress in these areas, we hope to convey a greater understanding of how viruses activate PRR signaling and how this interaction shapes the anti-viral immune response.
Vascular disrupting agents (VDAs) such as DMXAA (5,6-dimethylxanthenone-4-acetic acid) represent a novel approach for cancer treatment. DMXAA has potent anti-tumor activity in mice and, despite significant pre-clinical promise, failed human clinical trials. The anti-tumor activity of DMXAA has been linked to its ability to induce type I interferons in macrophages although the molecular mechanisms involved are poorly understood. Here we identify STING as a direct receptor for DMXAA leading to TBK1 and IRF3 signaling. Remarkably, the ability to sense DMXAA was restricted to murine STING. Human STING failed to bind to or signal in response to DMXAA. Human STING also failed to signal in response to cyclic-dinucleotides, conserved bacterial second messengers known to bind and activate murine STING signaling. Collectively, these findings detail an unexpected species-specific role for STING as a receptor for an anti-cancer drug and uncover important insights that may explain the failure of DMXAA in clinical trials for human cancer.
The innate immune system is important for control of infections, including herpesvirus infections. Intracellular DNA potently stimulates antiviral IFN responses. It is known that plasmacytoid dendritic cells sense herpesvirus DNA in endosomes via TLR9, and that non-immune tissue cells can sense herpesvirus DNA in the nucleus. However, it remains unknown how and where myeloid cells, like macrophages and conventional dendritic cells, detect infections with herpesviruses. Here we demonstrate that the HSV-1 capsid was ubiquitinated in the cytosol and degraded by the proteasome, hence releasing genomic DNA into the cytoplasm for detection by DNA sensors. In this context, the DNA sensor IFI16 is important for induction of IFN-β in human macrophages after infection with HSV-1 and CMV. Viral DNA localized to the same cytoplasmic regions as IFI16, with DNA sensing being independent of viral nuclear entry. Thus, proteasomal degradation of herpesvirus capsids releases DNA to the cytoplasm for recognition by DNA sensors.
Background: IFI16 binds dsDNA and elicits a type I interferon response. Results: IFI16 knockdown cells show a decrease in interferon production and ISG expression in response to DNA and RNA ligands and cyclic dinucleotides. Conclusion: IFI16 transcriptionally regulates ISGs to enhance IFN responses to multiple IFN-inducing ligands.Significance: IFI16 has a broader role in the regulation of ISG expression.
Somatic hypermutation (SHM) of antibody variable region genes is initiated in germinal center B cells during an immune response by activation-induced cytidine deaminase (AID), which converts cytosines to uracils. During accurate repair in nonmutating cells, uracil is excised by uracil DNA glycosylase (UNG), leaving abasic sites that are incised by AP endonuclease (APE) to create single-strand breaks, and the correct nucleotide is reinserted by DNA polymerase β. During SHM, for unknown reasons, repair is error prone. There are two APE homologs in mammals and, surprisingly, APE1, in contrast to its high expression in both resting and in vitro-activated splenic B cells, is expressed at very low levels in mouse germinal center B cells where SHM occurs, and APE1 haploinsufficiency has very little effect on SHM. In contrast, the less efficient homolog, APE2, is highly expressed and contributes not only to the frequency of mutations, but also to the generation of mutations at A:T base pair (bp), insertions, and deletions. In the absence of both UNG and APE2, mutations at A:T bp are dramatically reduced. Single-strand breaks generated by APE2 could provide entry points for exonuclease recruited by the mismatch repair proteins Msh2-Msh6, and the known association of APE2 with proliferating cell nuclear antigen could recruit translesion polymerases to create mutations at AIDinduced lesions and also at A:T bp. Our data provide new insight into error-prone repair of AID-induced lesions, which we propose is facilitated by down-regulation of APE1 and up-regulation of APE2 expression in germinal center B cells. D uring humoral immune responses, the recombined antibody variable [V(D)J] region genes undergo somatic hypermutation (SHM), which, after selection, greatly increases the affinity of antibodies for the activating antigen. This process occurs in germinal centers (GCs) in the spleen, lymph nodes, and Peyer's patches (PPs) and entirely depends on activation-induced cytidine deaminase (AID) (1, 2). AID initiates SHM by deamination of cytidine nucleotides in the variable region of antibody genes, converting the cytosine (dC) to uracil (dU) (1, 3, 4). Some AIDinduced dUs are excised by the ubiquitous enzyme uracil DNA glycosylase (UNG), resulting in abasic (AP) sites that can be recognized by apurinic/apyrimidinic endonuclease (APE) (4, 5). APE cleaves the DNA backbone at AP sites to form a singlestrand break (SSB) with a 3′ OH that can be extended by DNA polymerase (Pol) to replace the excised nucleotide (6). In most cells, DNA Pol β performs this extension with high fidelity, reinserting dC across from the template dG. In contrast, GC B cells undergoing SHM are rapidly proliferating, and some of the dUs are replicated over before they can be excised and are read as dT by replicative polymerases, resulting in dC to dT transition mutations. Unrepaired AP sites encountering replication lead to the nontemplated addition of any base opposite the site, causing transition and transversion mutations. However, it is not clear why dU...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.