MICA and MICB, and ULPB1-6, are ligands for NKG2D, an activating receptor expressed on NK cells and subsets of T cells. Expression of MICA and MICB is induced by cellular stress in transformed tumor cells, upon infections or at sites of chronic inflammation. Their expression is tightly regulated by complex mechanisms both at the mRNA and protein levels. As markers of cellular stress and tumorigenesis, MICA and MICB proteins are attractive candidates for targeting by a cytotoxic antibody. Moreover, ionizing radiation and various chemotherapies that cause cellular stress have been shown to induce expression of NKG2D ligands, opening interesting options for combination therapies. MICA and MICB are also compelling targets for immunomodulation. MICA and -B cause internalization of NKG2D, leading to reduced cell surface NKG2D levels and desensitization of cytotoxic effector cells in cancer patients. It was recently reported that blockade of the interactions between NKG2D and its ligands could lead to significant anti-tumor responses in mouse models. Moreover, NKG2D ligand expression was induced on immunosuppressive macrophages in cancer patients and in mouse tumor models, raising the possibility that anti-MICA/B antibodies may be used to counter local immunosuppression by targeting myeloid derived suppressor cells. We have selected the IPH4301 antibody for its ability to bind to all allotypes of MICA and MICB, and for its dual action as an immunomodulatory agent, as well as direct cytotoxicity towards MICA/B-expressing tumor cells. First, IPH4301 induces killing of MICA/B expressing tumor cells through antibody-dependent cell cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) measured towards MICA expressing cells in vitro. In vivo ADCC/ADCP efficacy was demonstrated in several preventive and curative settings using MICA expressing cell lines or endogenous tumors. Second, IPH4301 blocks the binding of MICA/B to NKG2D. In a tumor context of chronic triggering, NKG2D downmodulation has been described in several studies of cancer patients. This modulation is mainly induced by expression of MICA/B, and less by the ULBPs. By blocking the MICA/NKG2D interaction, IPH4301 effectively restored NKG2D expression and function in vitro on primary NK and T cells. Third, we show that IPH4301 can override immunosuppression induced by suppressive myeloid cells. In vitro differentiated M2 macrophages, but not M1 macrophages, have the capacity to impair cytotoxic functions of autologous NK cells towards MICA expressing tumor cell lines. This suppression could be overcome by IPH4301, which triggered ADCC by these otherwise impaired NK cells. Altogether, IPH4301 is a novel, first-in-class anti-MICA/B mAb with both cytotoxic and immunomodulatory properties. Ongoing work aims to perform regulatory toxicology studies and manufacture a clinical grade product for testing in a clinical trial. Citation Format: Ariane Morel, Nicolas Viaud, Cécile Bonnafous, Sylvia Trichard, Alix Joulin-Giet, Samia Mizari, Gwendoline Grondin, Nadia Anceriz, J. Zhang, J. Jarzen, J. Wu, Gwendoline Grondin, Laetitia Cohen-Tannoudji, Yannis Morel, Benjamin Rossi, Carine Paturel, Renaud Buffet, Laurent Gauthier, Nicolai Wagtmann, Mathieu Blery. IPH4301, an antibody targeting MICA and MICB exhibits potent cytotoxic activity and immunomodulatory properties for the treatment of cancer. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1491.
The interior of cells is a highly complex medium, containing numerous organelles, a matrix of different fibers and a viscous, aqueous fluid of proteins and small molecules. The interior of cells is also a highly dynamic medium, in which many components move, either by active transport or passive diffusion. The mobility and localization of proteins inside cells can provide important insights into protein function and also general cellular properties, such as viscosity. Neoplastic transformation affects numerous cellular properties, and our goal was to investigate the diffusional and binding behavior of the important mismatch repair (MMR) protein MSH2 in live human cells at various stages of neoplastic transformation. Toward this end, noncancerous, immortal, tumorigenic, and metastatic mammary epithelial cells were transfected with EGFP and EGFP-tagged MSH2. MSH2 forms two MMR proteins (MutSα and MutSβ) and we assume MSH2 is in the complex MutSα, though our results are similar in either case. Unlike the MutS complexes that bind to nuclear DNA, EGFP diffuses freely. EGFP and MutSα-EGFP diffusion coefficients were determined in the cytoplasm and nucleus of each cell type using fluorescence recovery after photobleaching. Diffusion coefficients were 14–24 μm2/s for EGFP and 3–7 μm2/s for MutSα-EGFP. EGFP diffusion increased in going from noncancerous to immortal cells, indicating a decrease in viscosity, with smaller changes in subsequent stages. MutSα produces an effective diffusion coefficient that, coupled with the free EGFP diffusion measurements, can be used to extract a pure diffusion coefficient and a pseudo-equilibrium constant K*. The MutSα nuclear K* increased sixfold in the first stage of cancer and then decreased in the more advanced stages. The ratio of nuclear to cytoplasmic K*for MutSα increased almost two orders of magnitude in going from noncancerous to immortal cells, suggesting that this quantity may be a sensitive metric for recognizing the onset of cancer.
Macrophages are an important component of the innate immune response and their ability to migrate toward pathogens is critical to their success as first responders. Several proteins are known to contribute to the migration of macrophages and their roles have been studied using Boyden chambers, Dunn chambers, and micropipette pointsources. However, visualizing macrophage migration has been difficult due to their inherently strong adhesion. We have been able to study macrophage migration in two dimensions using a novel surface preparation in which PDMS coated coverslips are stamped with the extracellular matrix protein fibronectin. LR5 macrophages were individually tracked on these surfaces in the presence of CSF-1, a physiologically relevant chemokine, using time-lapse microscopy. Analysis of the trajectories of motion has allowed us to describe motility in terms of speed, persistence time, and the random motility coefficient. LR5 cells in which endogenous Cdc42 or WASp was reduced using small interfering RNA were also examined to determine the role of these proteins in migration. Our results indicate that reduction of WASp levels leads to a significant reduction in motility. The knockdown of Cdc42 leads to a reduction in the random motility coefficient and sensitivity to ligand chemistry. Our results are in contrast to other studies which have linked Cdc42 and WASp to directional sensing but have found no defect in random motility. The roles of PI3K in macrophage migration are currently being investigated. We are also beginning to study the forces macrophages produce while migrating using microfabricated post array detectors. The cell lines with reduced protein levels will also be studied on posts to determine the role of each protein in force production. 1639-Pos Board B531The Nanomechanical Signature of Breast Cancer Cancer initiation and progression follow complex molecular and structural changes in the extracellular matrix and in the cellular architecture of living tissue. Yet, it remains poorly understood how the transformation from health to malignancy alters the mechanical properties of cells within the tumour microenvironment. Here we show using an indentation-type atomic force microscope (IT-AFM) that unadulterated human breast biopsies display distinct stiffness profiles. Correlative stiffness maps obtained on normal and benign tissues show uniform stiffness profiles that are characterized by a single distinct peak. In contrast, malignant tissues have a broad distribution resulting from tissue heterogeneity with a prominent low-stiffness peak representative of cancer cells. Similar findings are seen in specific stages of breast cancer in MMTV-PyMT transgenic mice. Further evidence obtained from the lungs of mice with late-stage tumours shows that migration and metastatic spreading is correlated to the low-stiffness of hypoxia-associated cancer cells. Overall, nanomechanical profiling by IT-AFM provides quantitative indicators in the clinical diagnostics of breast cancer with translational significance. ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.