C-V2X (Cellular Vehicle-to-Everything) is a state-of-the-art wireless technology used in autonomous driving and intelligent transportation systems (ITS). This technology has extended the coverage and blind-spot detection of autonomous driving vehicles. Economically, C-V2X is much more cost-effective than the traditional sensors that are commonly used by autonomous driving vehicles. This cost-benefit makes it more practical in a large scale deployment. PC5-based C-V2X uses an RF (Radio Frequency) sidelink direct communication for low latency mission-critical vehicle sensor connectivity. Over the C-V2X radio communications, the autonomous driving vehicle’s sensor ability can now be largely enhanced to the distances as far as the network covers. In 2020, 5G is commercialized worldwide, and Taiwan is at the forefront. Operators and governments are keen to see its implications in people’s daily life brought by its low latency, high reliability, and high throughput. Autonomous driving class L3 (Conditional Automation) or L4 (Highly Automation) are good examples of 5G’s advanced applications. In these applications, the mobile networks with URLLC (Ultra-Reliable Low-Latency Communication) are perfectly demonstrated. Therefore, C-V2X evolution and 5G NR (New Radio) deployment coincide and form a new ecosystem. This ecosystem will change how people will drive and how transportation will be managed in the future. In this paper, the following topics are covered. Firstly, the benefits of C-V2X communication technology. Secondly, the standards of C-V2X and C-V2X applications for automotive road safety system which includes V2P/V2I/V2V/V2N, and artificial intelligence in VRU (Vulnerable Road User) detection, object recognition and movement prediction for collision warning and prevention. Thirdly, PC5-based C-V2X deployment status in global, especially in Taiwan. Lastly, current challenges and conclusions of C-V2X development.
Generating a realistic human class image from a sketch is a unique and challenging problem considering that the human body has a complex structure that must be preserved. Additionally, input sketches often lack important details that are crucial in the generation process, hence making the problem more complicated. In this article, we present an effective method for synthesizing realistic images from human sketches. Our framework incorporates human poses corresponding to locations of key semantic components (e.g., arm, eyes, nose), seeing that its a strong prior for generating human class images. Our sketch-image synthesis framework consists of three stages: semantic keypoint extraction, coarse image generation, and image refinement. First, we extract the semantic keypoints using Part Affinity Fields (PAFs) and a convolutional autoencoder. Then, we integrate the sketch with semantic keypoints to generate a coarse image of a human. Finally, in the image refinement stage, the coarse image is enhanced by a Generative Adversarial Network (GAN) that adopts an architecture carefully designed to avoid checkerboard artifacts and to generate photo-realistic results. We evaluate our method on 6,300 sketch-image pairs and show that our proposed method generates realistic images and compares favorably against state-of-the-art image synthesis methods.
Convolutional Neural Network (CNN) based approaches are popular for various image/video related tasks due to their state-of-the-art performance. However, for problems like object detection and segmentation, CNNs still suffer from objects with arbitrary shapes or sizes, occlusions, and varying viewpoints. This problem makes it mostly unsuitable for fire detection and segmentation since flames can have an unpredictable scale and shape. In this paper, we propose a method that detects and segments fireregions with special considerations of their arbitrary sizes and shapes. Specifically, our approach uses a self-attention mechanism to augment spatial characteristics with temporal features, allowing the network to reduce its reliance on spatial factors like shape or size and take advantage of robust spatial-temporal dependencies. As a whole, our pipeline has two stages: In the first stage, we take out region proposals using Spatial-Temporal features, and in the second stage, we classify whether each region proposal is flame or not. Due to the scarcity of generous fire datasets, we adopt a transfer learning strategy to pre-train our classifier with the ImageNet dataset. Additionally, our Spatial-Temporal Network only requires semi-supervision, where it only needs one ground-truth segmentation mask per frame-sequence input. The experimental results of our proposed method significantly outperform the state-of-the-art fire detection with a 2 ∼ 4% relative enhancement in F1-score for large scale fires and a nearly ∼ 60% relative improvement for small fires at a very early stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.