Highlights d Lung ACE2 levels do not vary by age or sex, but smokers exhibit upregulated ACE2 d ACE2 is expressed in several lung cell types, including the secretory lineage d Chronic smoking triggers the expansion of ACE2 + secretory cells d ACE2 is also upregulated by viral infections and interferon exposure
Background Antivirals are needed to combat the COVID-19 pandemic, which is caused by SARS-CoV-2. The clinically-proven protease inhibitor Camostat mesylate inhibits SARS-CoV-2 infection by blocking the virus-activating host cell protease TMPRSS2. However, antiviral activity of Camostat mesylate metabolites and potential viral resistance have not been analyzed. Moreover, antiviral activity of Camostat mesylate in human lung tissue remains to be demonstrated. Methods We used recombinant TMPRSS2, reporter particles bearing the spike protein of SARS-CoV-2 or authentic SARS-CoV-2 to assess inhibition of TMPRSS2 and viral entry, respectively, by Camostat mesylate and its metabolite GBPA. Findings We show that several TMPRSS2-related proteases activate SARS-CoV-2 and that two, TMPRSS11D and TMPRSS13, are robustly expressed in the upper respiratory tract. However, entry mediated by these proteases was blocked by Camostat mesylate. The Camostat metabolite GBPA inhibited recombinant TMPRSS2 with reduced efficiency as compared to Camostat mesylate. In contrast, both inhibitors exhibited similar antiviral activity and this correlated with the rapid conversion of Camostat mesylate into GBPA in the presence of serum. Finally, Camostat mesylate and GBPA blocked SARS-CoV-2 spread in human lung tissue ex vivo and the related protease inhibitor Nafamostat mesylate exerted augmented antiviral activity. Interpretation Our results suggest that SARS-CoV-2 can use TMPRSS2 and closely related proteases for spread in the upper respiratory tract and that spread in the human lung can be blocked by Camostat mesylate and its metabolite GBPA. Funding NIH, Damon Runyon Foundation, ACS, NYCT, DFG, EU, Berlin Mathematics center MATH+, BMBF, Lower Saxony, Lundbeck Foundation, Novo Nordisk Foundation.
Endothelial cells, by virtue of their capacity to express adhesion molecules and cytokines, are intricately involved in inflammatory processes. Endothelial cells have been shown to express interleukin-1 (IL-1), IL-5, IL-6, IL-8, IL-11, IL-15, several colony-stimulating factors (CSF), granulocyte-CSF (G-CSF), macrophage CSF (M-CSF) and granulocyte-macrophage CSF (GM-CSF), and the chemokines, monocyte chemotactic protein-1 (MCP-1), RANTES, and growth-related oncogene protein-alpha (GRO-alpha). IL-1 and tumor necrosis factor-alpha (TNF-alpha) produced by infiltrating inflammatory cells can induce endothelial cells to express several of these cytokines as well as adhesion molecules. Induction of these cytokines in endothelial cells has been demonstrated by such diverse processes as hypoxia and bacterial infection. Recent studies have demonstrated that adhesive interactions between endothelial cells and recruited inflammatory cells can also signal the secretion of inflammatory cytokines. This cross-talk between inflammatory cells and the endothelium may be critical to the development of chronic inflammatory states. Endothelial-derived cytokines may be involved in hematopoiesis, cellular chemotaxis and recruitment, bone resorption, coagulation, and the acute-phase protein synthesis. As many of these processes are critical to the maturation of an inflammatory and reparative state, it appears likely that endothelial-derived cytokines play a crucial role in several diseases, including atherosclerosis, graft rejection, asthma, vasculitis, and sepsis. Genetic and pharmacologic manipulation of endothelial-derived cytokines provides an additional approach to the management of chronic inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.