Angiotensin-converting enzyme (ACE) is a zinc metalloproteinase involved in the renin-angiotensin system (RAS). It is well known that ACE and ACE2 are central regulators of blood pressure. Moreover, recently, it was observed that the ACE2 protein is the main target of the SARS-CoV-2 virus, so we have tried to reveal if there is a distinction in the levels of the ACE2 protein in distinct cell types (sensitive to virus infection), during cell differentiation and aging. We observed that depletion of the ACE2 protein appears in aorta-associated parts during the aging of adult mice, and the level of ACE2 was lowest in kidneys of old female animals in comparison to male mice. Differentiation into enterocytes and more pronouncedly into cardiomyocytes was accompanied by depletion of the ACE2 protein. The deficiency of histone deacetylase 1 (HDAC1) also caused a decrease in the level of both ACE2 and its interacting partner renin. However, experimental cardiomyogenesis was associated with renin up-regulation. In human lung adenocarcinoma cells, vitamin D2, but not chloroquine, slightly increased the level of ACE2. Together, the higher level of the ACE2 protein appears in non-differentiated cells and tissue of young mice, in comparisons to terminally differentiated cells and old animals; thus, a higher level of the ACE2 protein, also seen after vitamin D2 treatment, seems to be a barrier against SARS-CoV-2, because it is known that tissues of young individuals are less sensitive to viral infection.