Live-cell imaging and mathematical modelling of the type-I interferon response to viral infection reveal that multiple layers of the cellular response are stochastic events in individual cells, while paracrine propagation of the IFN signal results in reliable antiviral protection.
Although the action of interferons (IFNs) has been extensively studied in vitro, limited information is available on the spatial and temporal activation pattern of IFN-induced genes in vivo. We created BAC transgenic mice expressing firefly luciferase under transcriptional control of the Mx2 gene promoter. Expression of the reporter with regard to onset and kinetics of induction parallels that of Mx2 and is thus a hallmark for the host response. Substantial constitutive expression of the reporter gene was observed in the liver and most other tissues of transgenic mice, whereas this expression was strongly reduced in animals lacking functional type I IFN receptors. As expected, the reporter gene was induced not only in response to type I (␣ and ) and type III () IFNs but also in response to a variety of IFN inducers such as double-stranded RNA, lipopolysaccharide (LPS), and viruses. In vivo IFN subtypes show clear differences with respect to their kinetics of action and to their spatial activation pattern: while the type I IFN response was strong in liver, spleen, and kidney, type III IFN reactivity was most prominent in organs with mucosal surfaces. Infection of reporter mice with virus strains that differ in their pathogenicity shows that the IFN response is significantly altered in the strength of IFN action at sites which are not primarily infected as well as by the onset and duration of gene induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.