Abstract. We investigate the impact of atmospheric forcing uncertainties on the prediction of the dispersion of pollutants in the marine environment. Ensemble simulations consisting of 50 members were carried out using the ECMWF ensemble prediction system and the oil spill model MEDSLIK-II in the Aegean Sea. A deterministic control run using the unperturbed wind of the ECMWF high-resolution system served as reference for the oil spill prediction. We considered the oil spill rates and duration to be similar to major accidents of the past (e.g., the Prestige case) and we performed simulations for different seasons and oil spill types. Oil spill performance metrics and indices were introduced in the context of probabilistic hazard assessment. Results suggest that oil spill model uncertainties were sensitive to the atmospheric forcing uncertainties, especially to phase differences in the intensity and direction of the wind among members. An oil spill ensemble prediction system based on model uncertainty of the atmospheric forcing, shows great potential for predicting pathways of oil spill transport alongside a deterministic simulation, increasing the reliability of the model prediction and providing important information for the control and mitigation strategies in the event of an oil spill accident.
The impact of tides on the Bay of Biscay dynamics is investigated by means of an ocean model twin-experiment, consisted of two simulations with and without tidal forcing. The study is based on a high-resolution (1/36∘) regional configuration of NEMO (Nucleus for European Modelling of the Ocean) performing one-year simulations. The results highlight the imprint of tides on the thermohaline properties and circulation patterns in three distinct dynamical areas in the model domain: the abyssal plain, the Armorican shelf and the English Channel. When tides are activated, the bottom stress is increased in the shelf areas by about two orders of magnitude with respect to the open ocean, subsequently enhancing vertical mixing and weakening stratification in the bottom boundary layer. The most prominent feature reproduced only when tides are modelled, is the Ushant front near the entrance of the English Channel. Tides appear also to constrain the freshwater transport of rivers from the continental shelf to the open ocean. The spectral analysis revealed that the tidal forcing contributes to the SSH variance at high frequencies near the semidiurnal band and to the open ocean mesoscale and small-scale features in the presence of summer stratification pattern.
Abstract. We generate ocean biogeochemical model ensembles including several kinds of stochastic parameterizations. The NEMO stochastic modules are complemented by integrating a subroutine to calculate variable anisotropic spatial scales, which are of particular importance in high-resolution coastal configurations. The domain covers the Bay of Biscay at 1/36° resolution, as a case study for open-ocean and coastal shelf dynamics. At first, we identify uncertainties from assumptions subject to erroneous atmospheric forcing, ocean model improper parameterizations and ecosystem state uncertainties. The error regimes are found to be mainly driven by the wind forcing, with the rest of the perturbed tendencies locally augmenting the ensemble spread. Biogeochemical uncertainties arise from inborn ecosystem model errors and from errors in the physical state. Model errors in physics are found to have larger impact on chlorophyll spread than those of the ecosystem. In a second step, the ensembles undergo verification with respect to observations, focusing on upper-ocean properties. We investigate the statistical consistency of prior model errors and observation estimates, in view of joint uncertainty vicinities, associated with both sources of information. OSTIA-SST L4 distribution appears to be compatible with ensembles perturbing physics, since vicinities overlap, enabling data assimilation. The most consistent configuration for SLA along-track L3 data is in the Abyssal plain, where the spread is increased due to mesoscale eddy decorrelation. The largest statistical SLA biases are observed in coastal regions, sometimes to the point that vicinities become disjoint. Missing error processes in relation to SLA hint at the presence of high-frequency error sources currently unaccounted for, potentially leading to ill-posed assimilation problems. Ecosystem model-data samples with respect to Ocean Colour L4 appear to be compatible with each other only at times, with data assimilation being marginally well-posed. In a third step, we illustrate the potential influence of those uncertainties on data assimilation impact exercise, by means of multivariate representers and EnKF-type incremental analysis for a few members. Corrections on physical properties are associated with large-scale biases between model and data, with diverse characteristics in the open-ocean and the shelves. The increments are often characteristic of the underlying mesoscale features, chlorophyll included due to the vertical velocity field. Small scale local corrections are visible over the shelves. Chlorophyll information seems to have a very measurable potential impact on physical variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.