In this paper, we develop a formulation to utilize reinforcement learning and sampling-based robotics planning to derive low free energy transition pathways between two known states. Our formulation uses Jarzynski's equality and the stiff-spring approximation to obtain point estimates of energy, and construct an informed path search with atomistic resolution. At the core of this framework, is our first ever attempt we use a policy driven adaptive steered molecular dynamics (SMD) to control our molecular dynamics simulations. We show that both the reinforcement learning and robotics planning realization of the RL-guided framework can solve for pathways on toy analytical surfaces and alanine dipeptide.
Deep Learning (DL) models achieve great successes in many domains. However, DL models increasingly face safety and robustness concerns, including noisy labeling in the training stage and feature distribution shifts in the testing stage. Previous works made significant progress in addressing these problems, but the focus has largely been on developing solutions for only one problem at a time. For example, recent work has argued for the use of tunable robust loss functions to mitigate label noise, and data augmentation (e.g., AUGMIX) to combat distribution shifts. As a step towards addressing both problems simultaneously, we introduce AUGLOSS, a simple but effective methodology that achieves robustness against both train-time noisy labeling and test-time feature distribution shifts by unifying data augmentation and robust loss functions. We conduct comprehensive experiments in varied settings of real-world dataset corruption to showcase the gains achieved by AUGLOSS compared to previous state-of-the-art methods. Lastly, we hope this work will open new directions for designing more robust and reliable DL models under real-world corruptions. The GitHub link to the paper and code repository is: https://github.com/SankarLab/AugLoss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.