The stress—strain behavior at room temperature and at 1100° C (2000°F) is measured for two carbon fiber-reinforced silicon carbide (C/SiC) composite materials: a two dimensional (2D) plain-weave quasi-isotropic laminate and a 3D angle interlock woven composite. Previously developed micromechanics-based material models are calibrated by correlating the predicted material property values with the measured values. Four-point beam-bending subelement specimens are fabricated with these two fiber architectures and four-point bending tests are performed at room temperature and at 1100°C. Displacements and strains are measured at the mid-span of the beam and recorded as a function of load magnitude. The calibrated material models are used in concert with a nonlinear finite-element solution using ABAQUS to simulate the structural response of the two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compared favorably with the measured response for both materials and both test temperatures. Results show that the material models scale-up fairly well from coupons to subcomponent level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.