The purpose of this study was to determine whether the postponement of fatigue in subjects fed carbohydrate during prolonged strenuous exercise is associated with a slowing of muscle glycogen depletion. Seven endurance-trained cyclists exercised at 71 +/- 1% of maximal O2 consumption (VO2max), to fatigue, while ingesting a flavored water solution (i.e., placebo) during one trial and while ingesting a glucose polymer solution (i.e., 2.0 g/kg at 20 min and 0.4 g/kg every 20 min thereafter) during another trial. Fatigue during the placebo trial occurred after 3.02 +/- 0.19 h of exercise and was preceded by a decline (P less than 0.01) in plasma glucose to 2.5 +/- 0.5 mM and by a decline in the respiratory exchange ratio (i.e., R; from 0.85 to 0.80; P less than 0.05). Glycogen within the vastus lateralis muscle declined at an average rate of 51.5 +/- 5.4 mmol glucosyl units (GU) X kg-1 X h-1 during the first 2 h of exercise and at a slower rate (P less than 0.01) of 23.0 +/- 14.3 mmol GU X kg-1 X h-1 during the third and final hour. When fed carbohydrate, which maintained plasma glucose concentration (4.2-5.2 mM), the subjects exercised for an additional hour before fatiguing (4.02 +/- 0.33 h; P less than 0.01) and maintained their initial R (i.e., 0.86) and rate of carbohydrate oxidation throughout exercise. The pattern of muscle glycogen utilization, however, was not different during the first 3 h of exercise with the placebo or the carbohydrate feedings. The additional hour of exercise performed when fed carbohydrate was accomplished with little reliance on muscle glycogen (i.e., 5 mmol GU X kg-1 X h-1; NS) and without compromising carbohydrate oxidation. We conclude that when they are fed carbohydrate, highly trained endurance athletes are capable of oxidizing carbohydrate at relatively high rates from sources other than muscle glycogen during the latter stages of prolonged strenuous exercise and that this postpones fatigue.
We have compared the capillary density and muscle fiber type of musculus vastus lateralis with in vivo insulin action determined by the euglycemic clamp (M value) in 23 Caucasians and 41 Pima Indian nondiabetic men. M value was significantly correlated with capillary density (r = 0.63; P < 0.0001), percent type I fibers (r = 0.29; P < 0.02), and percent type 2B fibers (r = -0.38; P < 0.003). Fasting plasma glucose and insulin concentrations were significantly negatively correlated with capillary density (r = -0.46, P . 0.0001; r = -0.47, P . 0.0001, respectively). Waist circumference/thigh circumference ratio was correlated with percent type 1 fibers (r = -039; P < 0.002). These results suggest that diffusion distance from capillary to muscle cells or some associated biochemical change, and fiber type, could play a role in determining in vivo insulin action. The association of muscle fiber type with body fat distribution may indicate that central obesity is only one aspect of a more generalized metabolic syndrome. The data may provide at least a partial explanation for the insulin resistance associated with obesity and for the altered kinetics of insulin action in the obese.
Position Statement: The position of The Society regarding caffeine supplementation and sport performance is summarized by the following seven points: 1.) Caffeine is effective for enhancing sport performance in trained athletes when consumed in low-to-moderate dosages (~3-6 mg/kg) and overall does not result in further enhancement in performance when consumed in higher dosages (≥ 9 mg/kg). 2.) Caffeine exerts a greater ergogenic effect when consumed in an anhydrous state as compared to coffee. 3.) It has been shown that caffeine can enhance vigilance during bouts of extended exhaustive exercise, as well as periods of sustained sleep deprivation. 4.) Caffeine is ergogenic for sustained maximal endurance exercise, and has been shown to be highly effective for time-trial performance. 5.) Caffeine supplementation is beneficial for high-intensity exercise, including team sports such as soccer and rugby, both of which are categorized by intermittent activity within a period of prolonged duration. 6.) The literature is equivocal when considering the effects of caffeine supplementation on strength-power performance, and additional research in this area is warranted. 7.) The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance.
The time of ingestion of a carbohydrate supplement on muscle glycogen storage postexercise was examined. Twelve male cyclists exercised continuously for 70 min on a cycle ergometer at 68% VO2max, interrupted by six 2-min intervals at 88% VO2max, on two separate occasions. A 25% carbohydrate solution (2 g/kg body wt) was ingested immediately postexercise (P-EX) or 2 h postexercise (2P-EX). Muscle biopsies were taken from the vastus lateralis at 0, 2, and 4 h postexercise. Blood samples were obtained from an antecubital vein before and during exercise and at specific times after exercise. Muscle glycogen immediately postexercise was not significantly different for the P-EX and 2P-EX treatments. During the first 2 h postexercise, the rate of muscle glycogen storage was 7.7 mumol.g wet wt-1.h-1 for the P-EX treatment, but only 2.5 mumol.g wet wt-1.h-1 for the 2P-EX treatment. During the second 2 h of recovery, the rate of glycogen storage slowed to 4.3 mumol.g wet wt-1.h-1 during treatment P-EX but increased to 4.1 mumol.g wet wt-1.h-1 during treatment 2P-EX. This rate, however, was still 45% slower (P less than 0.05) than that for the P-EX treatment during the first 2 h of recovery. This slower rate of glycogen storage occurred despite significantly elevated plasma glucose and insulin levels. The results suggest that delaying the ingestion of a carbohydrate supplement post-exercise will result in a reduced rate of muscle glycogen storage.
Carbohydrate, protein, and carbohydrate-protein supplements were compared to determine their effects on muscle glycogen storage during recovery from prolonged exhaustive exercise. Nine male subjects cycled for 2 h on three separate occasions to deplete their muscle glycogen stores. Immediately and 2 h after each exercise bout, they ingested 112.0 g carbohydrate (CHO), 40.7 g protein (PRO), or 112.0 g carbohydrate and 40.7 g protein (CHO-PRO). Blood samples were drawn before exercise, immediately after exercise, and throughout recovery. Muscle biopsies were taken from the vastus lateralis immediately and 4 h after exercise. During recovery the plasma glucose response of the CHO treatment was significantly greater than that of the CHO-PRO treatment, but the plasma insulin response of the CHO-PRO treatment was significantly greater than that of the CHO treatment. Both the CHO and CHO-PRO treatments produced plasma glucose and insulin responses that were greater than those produced by the PRO treatment (P less than 0.05). The rate of muscle glycogen storage during the CHO-PRO treatment [35.5 +/- 3.3 (SE) mumol.g protein-1.h-1] was significantly faster than during the CHO treatment (25.6 +/- 2.3 mumol.g protein-1.h-1), which was significantly faster than during the PRO treatment (7.6 +/- 1.4 mumol.g protein-1.h-1). The results suggest that postexercise muscle glycogen storage can be enhanced with a carbohydrate-protein supplement as a result of the interaction of carbohydrate and protein on insulin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.