Knowing how many individuals there are in a population is a fundamental problem in the management and conservation of freshwater and marine fish. We compare abundance estimates (census size, Nc) in seven brook trout Salvelinus fontinalis populations using standard mark–recapture (MR) and the close‐kin mark–recapture (CKMR) method. Our purpose is to validate CKMR as a method for estimating population size. Close‐kin mark–recapture is based on the principle that an individual's genotype can be considered a “recapture” of the genotypes of each of its parents. Assuming offspring and parents are sampled independently, the number of parent–offspring pairs (POPs) genetically identified in these samples can be used to estimate abundance. We genotyped (33 microsatellites) and aged c. 2,400 brook trout individuals collected over 5 consecutive years (2014–2018). We provide an alternative interpretation of CKMR in terms of the Lincoln–Petersen estimator in which the parents are considered as tagging the offspring rather than the offspring “recapturing” the parents. Despite various sources of uncertainty, we find close agreement between standard MR abundance estimates obtained through double‐pass electrofishing and CKMR estimates, which require information on age‐specific fecundity, and population‐ and age‐specific survival rates. Population sizes (trueN^) are estimated to range between 300 and 6,000 adult individuals. Our study constitutes the first in situ validation of CKMR and establishes it as a useful method for estimating population size in aquatic systems where assumptions of random sampling and thorough mixing of individuals can be met.
The relationship between the effective number of breeders ( N b ) and the generational effective size ( N e ) has rarely been examined empirically in species with overlapping generations and iteroparity. Based on a suite of 11 microsatellite markers, we examine the relationship between N b , N e and census population size ( N c ) in 14 brook trout ( Salvelinus fontinalis ) populations inhabiting 12 small streams in Nova Scotia and sampled at least twice between 2009 and 2015. Unbiased estimates of N b obtained with individuals of a single cohort, adjusted on the basis of age at first maturation ( α ) and adult lifespan (AL), were from 1.66 to 0.24 times the average estimates of N e obtained with random samples of individuals of mixed ages (i.e. ). In turn, these differences led to adjusted N e estimates that were from nearly five to 0.7 times the estimates derived from mixed-aged individuals. These differences translate into the same range of variation in the ratio of effective to census population size within populations. Adopting as the more precise and unbiased estimates, we found that these brook trout populations differ markedly in their effective to census population sizes (range approx. 0.3 to approx. 0.01). Using A ge N e , we then showed that the variance in reproductive success or reproductive skew varied among populations by a factor of 40, from V k / k ≈ 5 to 200. These results suggest wide differences in population dynamics, probably resulting from differences in productivity affecting the intensity of competition for access to mates or redds, and thus reproductive skew. Understanding the relationship between N e , N b and N c , and how these relate to population dynamics and fluctuations in population size, are important for the design of robust conservation strategies in small populations with overlapping generations and iteroparity.
The seasonal feeding pattern of sea-run brook trout Salvelinus fontinalis was studied from November to May 2010-2012 in Antigonish Harbour, Nova Scotia, Canada (45° 38' N; 61° 55' W). Sixty-three S. fontinalis (mean ± s.d. fork length = 330 ± 70 mm and mass = 536 ± 351 g) captured had fed predominantly on fishes (Fundulidae and Gasterosteidae). Percentage of empty stomachs was highest during autumn (18%) and winter (22%) and lowest in spring (7%). Stomach fullness increased from autumn to a maximum during winter, relating to near-zero body temperatures which may have effectively stopped gastric evacuation. Although feeding occurred during winter (December to March), consumption rates were calculated as negative values, and subsequently returned to positive values in spring (April to May). The over-winter life-history strategy of this sea-run S. fontinalis population appears to be a feeding marine migration in which fish continually increase body condition, representing an alternative to the more common overwintering strategy of starvation in fresh water until spring.
Many populations of freshwater fishes are threatened with losses, and increasingly, the release of hatchery individuals is one strategy being implemented to support wild populations. However, stocking of hatchery individuals may pose long-term threats to wild populations, particularly if genetic interactions occur between wild and hatchery individuals. One highly prized sport fish that has been heavily stocked throughout its range is the brook trout (Salvelinus fontinalis). In Nova Scotia, Canada, hatchery brook trout have been stocked since the early 1900s, and despite continued stocking efforts, populations have suffered declines in recent decades. Before this
A principal components analysis was conducted on the results of published reports and data sets from technical papers that include speckled trout Salvelinus fontinalis population estimates from 14 Nova Scotia lakes. The purpose of this paper was to identify the factors that influenced trout density and biomass. Population parameters, including mean fork length (cm), population density (n/ha), and population biomass (kg/ha), relative to variation in lake size, acidity, and competitor species were assessed and compared among lakes. Populations with small mean length and slow growth displayed larger fish density and biomass suggesting density-dependence. Acidic conditions potentially impact spawning potential and reduced recruitment that resulted in small population density and larger trout. The number of other fish species present in the lakes was used as an index of competition and had the greatest impact on trout density and biomass in Nova Scotia lakes. Yellow perch seemed to have the most impact of all the competitor species. In five lakes that contained yellow perch the mean trout population biomass was 0.19 kg-ha-1 (0.2,SD) compared to 4.5 kg-ha-1 (0.26, SD) in eight lakes that did not contain perch species. Lentic habitat conditions can greatly influence the potential success of different fisheries management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.