With CAD used at a level allowing only three FP detections per CT scan, sensitivity was substantially higher than with conventional double reading.
Pseudoprogression may present as transient new or increasing enhancing lesions that mimic recurrent tumors in treated glioblastoma. The purpose of this study was to examine the utility of dynamic contrast enhanced T1 magnetic resonance imaging (DCE MRI) in differentiating between pseudoprogression and tumor progression and devise a cut-off value sensitive for pseudoprogression. We retrospectively examined 37 patients with glioblastoma treated with radiation and temozolomide after surgical resection that then developed new or increasing enhancing lesion(s) indeterminate for pseudoprogression versus progression. Volumetric plasma volume (Vp) and time-dependent leakage constant (Ktrans) maps were measured for the enhancing lesion and the mean and ninetieth percentile histogram values recorded. Lesion outcome was determined by clinical follow up with pseudoprogression defined as stable disease not requiring new treatment. Statistical analysis was performed with Wilcoxon rank-sum tests. Patients with pseudoprogression (n = 13) had Vp (mean) = 2.4 and Vp (90 %tile) = 3.2; and Ktrans (mean) = 3.5 and Ktrans (90 %tile) = 4.2. Patients with tumor progression (n = 24) had Vp (mean) = 5.3 and Vp (90 %tile) = 6.6; and Ktrans (mean) = 7.4 and Ktrans (90 %tile) = 9.1. Compared with tumor progression, pseudoprogression demonstrated lower Vp perfusion values (p = 0.0002) with a Vp (mean) cutoff <3.7 yielding 85 % sensitivity and 79 % specificity for pseudoprogression. Ktrans (mean) of >3.6 had a 69 % sensitivity and 79 % specificity for disease progression. DCE MRI shows lower plasma volume and time dependent leakage constant values in pseudoprogression than in tumor progression. A cut-off value with high sensitivity for pseudoprogression can be applied to aid in interpretation of DCE MRI.
Study Design.This was a retrospective study focusing on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to assess treatment response in patients with spinal metastases.Objective.To demonstrate DCE-MRI changes before and after radiation treatment and correlating with other imaging and clinical findings.Summary of Background Data.Currently, conventional imaging is limited in evaluating early treatment success or failure, which impacts patient care.Methods.Consecutive patients with known spinal metastases underwent DCE-MRI before and after radiotherapy. Perfusion data on 19 lesions were analyzed. Radiotherapy was classified as success (n = 17) or failure (n = 2) on the basis of evidence of tumor contraction (n = 4), negative positron emission tomography (n = 2), or stability for more than 11 months (n = 11). Perfusion parameters blood plasma volume (Vp), time-dependent leakage (Ktrans), area under the curve, and peak enhancement were derived from the signal intensity-time curves and changes in parameter values from pre- to post-treatment were calculated. Curve morphologies were also qualitatively assessed in 13 pre- and 13 post-treatment scans.Results.Vp was the strongest predictor of treatment response (false-positive rate = 9.38 × 10−9 and false-negative rate = 0.055). All successfully treated lesions showed decreases in Vp, and the 2 treatment failures showed drastic increases in Vp. Changes in area under the curve and peak enhancement demonstrated similar relationships to the observed treatment response, whereas changes in Ktrans showed no significant relationship. Signal intensity curve morphologies also demonstrated specificity for active disease (11 of 13) and treated disease (8 of 13).Conclusion.Changes in perfusion, particularly Vp, reflect tumor responses to radiotherapy in spinal bone metastases. These changes were able to predict positive outcomes earlier than 6 months after treatment in 16 of 17 tumors. The ability of DCE-MRI to detect early treatment response has the potential to improve patient care and outcome.
Purpose Posterior reversible encephalopathy syndrome (PRES) is a disorder of cerebrovascular autoregulation that can result in brain edema, hemorrhage, and infarction. We sought to investigate whether certain imaging characteristics in PRES are associated with clinically significant patient outcomes. Methods We retrospectively reviewed all cases of PRES occurring between 2008 and 2014 at two major academic medical centers. Demographic, clinical, and radiographic data were collected. We analyzed imaging studies for vasogenic edema, hemorrhage, and diffusion restriction. We performed univariate analysis and stepwise logistic regression to assess the association between our radiologic findings of interest and clinical outcomes as defined by hospital discharge disposition and modified Rankin scale (mRS) at time of discharge. Results We identified 99 cases of PRES in 96 patients. The median age was 55 years (IQR 30-65) and 74% were women. In 99 cases, 60% of patients had active cancer, 19% had history of bone marrow or organ transplantation, 14% had autoimmune disease, and 8% were peripartum. Imaging at clinical presentation showed extensive vasogenic edema in 39%, hemorrhage in 36%, hemorrhage with mass effect in 7%, and restricted diffusion in 16%. In our final logistic regression models, the presence of extensive vasogenic edema, hemorrhage with mass effect, or diffusion restriction was associated with worse clinical outcome as defined by both discharge disposition (OR=4.3; 95% CI: 1.4-36.3; p=0.047) and mRS (OR=3.6; 95% CI: 1.2-10.7; p=0.019). Conclusions Extensive vasogenic edema, hemorrhage, and restricted diffusion on initial imaging in PRES are associated with worse clinical outcomes.
Blood oxygenation‐level dependent (BOLD) MRI has gained particular attention in functional brain imaging studies, where it can be used to localize areas of brain activation with high temporal resolution. To a higher degree than in the brain, skeletal muscles show extensive but transient alterations of blood flow between resting and activation state. Thus, there has been interest in the application of the BOLD effect in studying the physiology of skeletal muscles (healthy and diseased) and its possible application to clinical practice. This review outlines the potential of skeletal muscle BOLD MRI as a diagnostic tool for the evaluation of physiological and pathological alterations in the peripheral limb perfusion, such as in peripheral arterial occlusive disease. Moreover, current knowledge is summarized regarding the complex mechanisms eliciting BOLD effect in skeletal muscle. We describe technical fundaments of the procedure that should be taken into account when performing skeletal muscle BOLD MRI, including the most often applied paradigms to provoke BOLD signal changes and key parameters of the resulting time courses. Possible confounding effects in muscle BOLD imaging studies, like age, muscle fiber type, training state, and drug effects are also reviewed in detail. J. Magn. Reson. Imaging 2012;35:1253–1265. © 2012 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.