Electro-osmotic flow (EOF) pumps are attractive for fluid manipulation in microfluidic channels. Open channel EOF pumps can produce high pressures and flow rates, and are relatively easy to fabricate on-chip or integrate with other microfluidic or electrical components. An EOF pump design that is conducive to on-chip fabrication consists of multiple small channel arms feeding into a larger flow channel. We have fabricated this type of pump design using a thin film deposition process that avoids wafer bonding. We have evaluated pumps fabricated on both silicon and glass substrates. Consistent flow rate versus electric field were obtained. For the range of 40-400 V, flow rates of 0.19-2.30 muLmin were measured. Theoretical calculations of pump efficiency were made, as well as calculations of the mechanical power generated by various pump shapes, to investigate design parameters that should improve future pumps.
Electroosmotic flow was studied in thin film microchannels with silicon dioxide and silicon nitride sidewalls formed using plasma-enhanced chemical vapor deposition ͑PECVD͒. A sacrificial etching process was employed for channel fabrication allowing for cross-sections with heights of 3 m, ranging from 2 m to 50 m in width. Flow rates were measured for single channels and multichannel electroosmotic pump structures for pH levels ranging from 2.6 to 8.3, and zeta potentials were calculated for both silicon dioxide and silicon nitride surfaces. Flow rates as high as 0.086 L / min were measured for nitride multichannel pumps at applied electric fields of 300 V/mm. The surface characteristics of PECVD nitride were analyzed and compared to more well-known oxide surfaces to determine the density of amine sites compared to silanol sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.