In ecosystems with frequent surface fire regimes, fire and fuel heterogeneity has been largely overlooked owing to the lack of unburned patches and the difficulty in measuring fire behavior at fine scales (0.1–10 m). The diverse vegetation in these ecosystems varies at these fine scales. This diversity could be driven by the influences of local interactions among patches of understorey vegetation and canopy-supplied fine fuels on fire behavior, yet no method we know of can capture fine-scale fuel and fire measurements such that these relationships could be rigorously tested. We present here an original method for inventorying of fine-scale fuels and in situ measures of fire intensity within longleaf pine forests of the south-eastern USA. Using ground-based LIDAR (Light Detection and Ranging) with traditional fuel inventory approaches, we characterized within-fuel bed variation into discrete patches, termed wildland fuel cells, which had distinct fuel composition, characteristics, and architecture that became spatially independent beyond 0.5 m2. Spatially explicit fire behavior was measured in situ through digital infrared thermography. We found that fire temperatures and residence times varied at similar scales to those observed for wildland fuel cells. The wildland fuels cell concept could seamlessly connect empirical studies with numerical models or cellular automata models of fire behavior, representing a promising means to better predict within-burn heterogeneity and fire effects.
Improved fire management of savannas and open woodlands requires better understanding of the fundamental connection between fuel heterogeneity, variation in fire behaviour and the influence of fire variation on vegetation feedbacks. In this study, we introduce a novel approach to predicting fire behaviour at the submetre scale, including measurements of forest understorey fuels using ground-based LIDAR (light detection and ranging) coupled with infrared thermography for recording precise fire temperatures. We used ensemble classification and regression trees to examine the relationships between fuel characteristics and fire temperature dynamics. Fire behaviour was best predicted by characterising fuelbed heterogeneity and continuity across multiple plots of similar fire intensity, where impacts from plot-to-plot variation in fuel, fire and weather did not overwhelm the effects of fuels. The individual plot-level results revealed the significance of specific fuel types (e.g. bare soil, pine leaf litter) as well as the spatial configuration of fire. This was the first known study to link the importance of fuelbed continuity and the heterogeneity associated with fuel types to fire behaviour at metre to submetre scales and provides the next step in understanding the complex responses of vegetation to fire behaviour.
Future climate changes could alter hydrometeorological patterns and change the nature of droughts at global to regional scales. However, there are considerable uncertainties in future drought projections. Here, we focus on agricultural drought by analyzing surface soil moisture outputs from CMIP5 multi-model ensembles (MMEs) under RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios. First, the annual mean soil moisture by the end of the 21st century shows statistically significant large-scale drying and limited areas of wetting for all scenarios, with stronger drying as the strength of radiative forcing increases. Second, the MME mean spatial extent of severe drought is projected to increase for all regions and all future RCP scenarios, and most notably in Central America (CAM), Europe and Mediterranean (EUM), Tropical South America (TSA), and South Africa (SAF). Third, the model uncertainty presents the largest source of uncertainty (over 80%) across the entire 21st century among the three sources of uncertainty: internal variability, model uncertainty, and scenario uncertainty. Finally, we find that the spatial pattern and magnitude of annual and seasonal signal to noise (S/N) in soil moisture anomalies do not change significantly by lead time, indicating that the spreads of uncertainties become larger as the signals become stronger.
The Rasch model for item analysis is an important member of the class of exponential response models in which the number of nuisance parameters increases with the number of subjects, leading to the failure of the usual likelihood methodology. Both conditional-likelihood methods and mixture-model techniques have been used to circumvent these problems. In this article, we show that these seemingly unrelated analyses are in fact closely linked to each other, despite dramatic structural differences between the classes of models implied by each approach. We show that the finite-mixture model for J dichotomous items having T latent classes gives the same estimates of item parameters as conditional likelihood on a set whose probability approaches one if T 2: (J + 1)/2. Unconditional maximum likelihood estimators for the finite-mixture model can be viewed as Keifer-Wolfowitz estimators for the random-effects version of the Rasch model. Latent-class versions of the model are especially attractive when T is small relative to J. We analyze several sets of data, propose simple diagnostic checks, and discuss procedures for assigning scores to subjects based on posterior means. A flexible and general methodology for item analysis based on latent class techniques is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.