Alaska encompasses several climate types because of its vast size, high-latitude location, proximity to oceans, and complex topography. There is a great need to understand how climate varies regionally for climatic research and forecasting applications. Although climate-type zones have been established for Alaska on the basis of seasonal climatological mean behavior, there has been little attempt to construct climate divisions that identify regions with consistently homogeneous climatic variability. In this study, cluster analysis was applied to monthly-average temperature data from 1977 to 2010 at a robust set of weather stations to develop climate divisions for the state. Mean-adjusted Advanced Very High Resolution Radiometer surface temperature estimates were employed to fill in missing temperature data when possible. Thirteen climate divisions were identified on the basis of the cluster analysis and were subsequently refined using local expert knowledge. Divisional boundary lines were drawn that encompass the grouped stations by following major surrounding topographic boundaries. Correlation analysis between station and gridded downscaled temperature and precipitation data supported the division placement and boundaries. The new divisions north of the Alaska Range were the North Slope, West Coast, Central Interior, Northeast Interior, and Northwest Interior. Divisions south of the Alaska Range were Cook Inlet, Bristol Bay, Aleutians, Northeast Gulf, Northwest Gulf, North Panhandle, Central Panhandle, and South Panhandle. Correlations with various Pacific Ocean and Arctic climatic teleconnection indices showed numerous significant relationships between seasonal division average temperature and the Arctic Oscillation, Pacific-North American pattern, North Pacific index, and Pacific decadal oscillation.
On the sub-monthly timescale, temperatures across Alaska are to the first order correlated with the alternating zonal to meridional Pacific/North American pattern. Analysis of daily winter temperatures at Fairbanks indicates that cold anomalies are more frequent and are longer in duration than warm anomalies, primarily due to radiational cooling of the boundary layer and the subsequent formation of deep temperature inversions. The development of strong inversions over the interior of Alaska limits the response of temperatures to changes in the synoptic-scale flow pattern. Warm anomalies in contrast to cold anomalies, are primarily a function of warm air advection, therefore temperatures during warm anomalies fluctuate in phase with changes in the synoptic-scale flow. Ultimately, air temperatures across Alaska are a function of: synoptic-scale forcings, radiative cooling of the boundary layer as well as local and regional effects such as downslope and drainage winds. Published in
In order to assist in comparing the computational techniques used in different models, the authors propose a standardized set of one-dimensional numerical experiments that could be completed for each model. The results of these experiments, with a simplified form of the computational representation for advection, diffusion, pressure gradient term, Coriolis term, and filter used in the models, should be reported in the peer-reviewed literature. Specific recommendations are described in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.