At least eight inherited human neurodegenerative diseases are caused by expansion of a polyglutamine domain within the respective proteins. This confers dominant toxicity on the proteins, leading to dysfunction and loss of neurons. Expanded polyglutamine proteins form aggregates, including nuclear inclusions (NI), within neurons, possibly due to misfolding of the proteins. NI are ubiquitinated and sequester molecular chaperone proteins and proteasome components, suggesting that disease pathogenesis includes activation of cellular stress pathways to help refold, disaggregate or degrade the mutant disease proteins. Overexpression of specific chaperone proteins reduces polyglutamine aggregation in transfected cells, but whether this alters toxicity is unknown. Using a Drosophila melanogaster model of polyglutamine disease, we show that directed expression of the molecular chaperone HSP70 suppresses polyglutamine-induced neurodegeneration in vivo. Suppression by HSP70 occurred without a visible effect on NI formation, indicating that polyglutamine toxicity can be dissociated from formation of large aggregates. Our studies indicate that HSP70 or related molecular chaperones may provide a means of treating these and other neurodegenerative diseases associated with abnormal protein conformation and toxicity.
Spinocerebellar ataxia type 3 (SCA3/MJD) is one of at least eight human neurodegenerative diseases caused by glutamine-repeat expansion. We have recreated glutamine-repeat disease in Drosophila using a segment of the SCA3/MJD protein. Targeted expression of the protein with an expanded polyglutamine repeat led to nuclear inclusion (NI) formation and late-onset cell degeneration. Differential sensitivity to the mutant transgene was observed among different cell types, with neurons being particularly susceptible; NI formation alone was not sufficient for degeneration. The viral antiapoptotic gene P35 mitigated polyglutamine-induced degeneration in vivo. Our results demonstrate that cellular mechanisms of human glutamine-repeat disease are conserved in invertebrates. This fly model will aid in identifying additional factors that modulate neurodegeneration.
Two central issues in polyglutamine-induced neurodegeneration are the influence of the normal function of the disease protein and modulation by protein quality control pathways. By using Drosophila, we now directly link host protein function and disease pathogenesis to ubiquitin pathways in the polyglutamine disease spinocerebellar ataxia type 3 (SCA3). Normal human ataxin-3--a polyubiquitin binding protein with ubiquitin protease activity--is a striking suppressor of polyglutamine neurodegeneration in vivo. This suppressor activity requires ubiquitin-associated activities of the protein and is dependent upon proteasome function. Our results highlight the critical importance of host protein function in SCA3 disease and a potential therapeutic role of ataxin-3 activity for polyglutamine disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.