Among many achievements in the neurodegeneration field in the past decade, two require special attention due to the huge impact on our understanding of molecular and cellular pathogenesis of human neurodegenerative diseases. First is defining specific mutations in familial neurodegenerative diseases and second is modeling these diseases in easily manipulable model organisms including the fruit fly, nematode, and yeast. The power of these genetic systems has revealed many genetic factors involved in the various pathways affected, as well as provided potential drug targets for therapeutics. This review focuses on fruit fly models of human neurodegenerative diseases, with emphasis on how fly models have provided new insights into various aspects of human diseases.
Two central issues in polyglutamine-induced neurodegeneration are the influence of the normal function of the disease protein and modulation by protein quality control pathways. By using Drosophila, we now directly link host protein function and disease pathogenesis to ubiquitin pathways in the polyglutamine disease spinocerebellar ataxia type 3 (SCA3). Normal human ataxin-3--a polyubiquitin binding protein with ubiquitin protease activity--is a striking suppressor of polyglutamine neurodegeneration in vivo. This suppressor activity requires ubiquitin-associated activities of the protein and is dependent upon proteasome function. Our results highlight the critical importance of host protein function in SCA3 disease and a potential therapeutic role of ataxin-3 activity for polyglutamine disorders.
Spinocerebellar ataxia type-3 (SCA3) is among the most common dominantly inherited ataxias, and is one of nine devastating human neurodegenerative diseases caused by the expansion of a CAG repeat encoding glutamine within the gene. The polyglutamine domain confers toxicity on the protein Ataxin-3 leading to neuronal dysfunction and loss. Although modifiers of polyglutamine toxicity have been identified, little is known concerning how the modifiers function mechanistically to affect toxicity. To reveal insight into spinocerebellar ataxia type-3, we performed a genetic screen in Drosophila with pathogenic Ataxin-3-induced neurodegeneration and identified 25 modifiers defining 18 genes. Despite a variety of predicted molecular activities, biological analysis indicated that the modifiers affected protein misfolding. Detailed mechanistic studies revealed that some modifiers affected protein accumulation in a manner dependent on the proteasome, whereas others affected autophagy. Select modifiers of Ataxin-3 also affected tau, revealing common pathways between degeneration due to distinct human neurotoxic proteins. These findings provide new insight into molecular pathways of polyQ toxicity, defining novel targets for promoting neuronal survival in human neurodegenerative disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.