Accelerated mass loss from the Greenland ice sheet leads to glacier retreat and an increasing input of glacial meltwater to the fjords and coastal waters around Greenland. These high latitude ecosystems are highly productive and sustain important fisheries, yet it remains uncertain how they will respond to future changes in the Arctic cryosphere. Here we show that marine-terminating glaciers play a crucial role in sustaining high productivity of the fjord ecosystems. Hydrographic and biogeochemical data from two fjord systems adjacent to the Greenland ice sheet, suggest that marine ecosystem productivity is very differently regulated in fjords influenced by either land-terminating or marine-terminating glaciers. Rising subsurface meltwater plumes originating from marine-terminating glaciers entrain large volumes of ambient deep water to the surface. The resulting upwelling of nutrient-rich deep water sustains a high phytoplankton productivity throughout summer in the fjord with marine-terminating glaciers. In contrast, the fjord with only land-terminating glaciers lack this upwelling mechanism, and is characterized by lower productivity.Data on commercial halibut landings support that coastal regions influenced by large marine-terminating glaciers have substantially higher marine productivity. These results suggest that a switch from marine-terminating to land-terminating glaciers can substantially alter the productivity in the coastal zone around Greenland with potentially large ecological and socio-economic implications.
Recent warming of Subpolar Mode Water off Greenland has been suggested to accelerate the mass loss from tidal outlet glaciers of the Greenland Ice Sheet. We present a comprehensive analysis of water masses, dynamics, and interannual hydrographic variability in Godthåbsfjord, a sill fjord in contact with tidal outlet glaciers on the west coast of Greenland. Through seasonal observations we recognize an intermediate baroclinic circulation mode driven by tidal currents and an associated important local heat source for the fjord. During summer this results in significant warming and freshening of the intermediate layer of the main fjord, and the increase in heat content is equivalent to melting of ∼2.1 km3 of glacial ice. This is comparable to ∼8 km3 glacial ice discharge estimated from the Kangiata Nunâta Sermia calving front per year. During winter the external heat source in the West Greenland Current enters the fjord as intermittent inflows of either cold (<2°C) or warm (>2°C) dense water in pulses of 1 to 3 months duration. Four distinct circulation modes are observed in the fjord, of which all can contribute to glacial ice melt. An important aspect of the ice distribution in the fjord is that only a minor fraction is exported out of the fjord.
[1] The Greenland Ice Sheet releases large amounts of freshwater into the fjords around Greenland and many fjords are in direct contact with the ice sheet through tidewater outlet glaciers. Here we present the first seasonal hydrographic observations from the inner part of a sub-Arctic fjord, relatively close to and within 4-50 km of a fast-flowing tidewater outlet glacier. This region is characterized by a dense glacial and sea ice cover. Freshwater from runoff, subglacial freshwater (SgFW) discharge, glacial, and sea ice melt are observed above 50-90 m depth. During summer, SgFW and subsurface glacial melt mixed with ambient water are observed as a layered structure in the temperature profiles below the low-saline summer surface layer (<7 m). During winter, the upper water column is characterized by stepwise halo-and thermoclines formed by mixing between deeper layers and the surface layer influenced by ice melt. The warm (T > 1 C) intermediate water mass is a significant subsurface heat source for ice melt. We analyze the temperature and salinity profiles observed in late summer with a thermodynamic mixing model and determine the total freshwater content in the layer below the summer surface layer to be between 5% and 11%. The total freshwater contribution in this layer from melted glacial ice was estimated to be 1-2%, while the corresponding SgFW was estimated to be 3-10%. The winter measurements in the subsurface halocline layer showed a total freshwater content of about 1% and no significant contribution from SgFW.
Runoff from the Greenland Ice Sheet (GrIS) is thought to enhance marine productivity by adding bioessential iron and silicic acid to coastal waters. However, experimental data suggest nitrate is the main summertime growth-limiting resource in regions affected by meltwater around Greenland. While meltwater contains low nitrate concentrations, subglacial discharge plumes from marine-terminating glaciers entrain large quantities of nitrate from deep seawater. Here, we characterize the nitrate fluxes that arise from entrainment of seawater within these plumes using a subglacial discharge plume model. The upwelled flux from 12 marine-terminating glaciers is estimated to be >1000% of the total nitrate flux from GrIS discharge. This plume upwelling effect is highly sensitive to the glacier grounding line depth. For a majority of Greenland’s marine-terminating glaciers nitrate fluxes will diminish as they retreat. This decline occurs even if discharge volume increases, resulting in a negative impact on nitrate availability and thus summertime marine productivity.
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.