An ultraviolet‐visible spectroscopic investigation has been made of the interactions of a specially synthesised series of substituted, model arylazonaphthol dyes with nonionic and anionic surfactants. Changes in spectral features were recorded above the critical micelle concentrations, suggesting specific interactions of dyes with micelles of the respective surfactants. The affinity of the dye for the surfactant micelles increased when various p‐substituent were incorporated in to the dyes. Similarly, there was a shift in azo–hydrazone tautomeric equilibria and an increase in measured dye pKa values. Models are proposed for the location of dyes in nonionic or anionic micelles. Unlike earlier studies, it is concluded that the solubilised dye experiences only one environment in nonionic micelles but the specific location, i.e. whether preferentially incorporated in the hydrophobic micellar interior or in the more hydrophilic, outer polyoxyethylene layer, depends upon the nature of the substituent.
The structure and bonding of the azo dye Orange II (Acid Orange 7) in parent and reduced forms have been studied using NMR, infrared, Raman, UV-visible, and electron paramagnetic resonance (EPR) spectroscopy, allied with density functional theory (DFT) calculations on three hydrazone models (no sulfonate, anionic sulfonate, and protonated sulfonate) and one azo model (protonated sulfonate). The calculated structures of the three hydrazone models are similar to each other and that of the model without a sulfonate group (Solvent Yellow 14) closely matches its reported crystal structure. The 1H and 13C NMR resonances of Orange II, assigned directly from 1D and 2D experimental data, indicate that it is present as > or = 95% hydrazone in aqueous solution, and as a ca. 70:30 hydrazone:azo mixture in dimethyl sulfoxide at 300 K. Overall, the experimental data from Orange II are matched well by calculations on the hydrazone model with a protonated sulfonate group; the IR, Raman, and UV-visible spectra of Orange II are assigned to specific vibrational modes and electronic transitions calculated for this model. The EPR spectrum obtained on one-electron reduction of Orange II by the 2-hydroxy-2-propyl radical (*CMe2OH) at pH 4 is attributed to the hydrazyl radical produced on protonation of the radical anion. Calculations on reduced forms of the model dyes support this assignment, with electron spin density on the two nitrogen atoms and the naphthyl ring; in addition, they provide estimates of the structures, vibrational spectra, and electronic transitions of the radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.