Cyclin D1 is an important regulator of cell cycle progression and can function as a transcriptionl co-regulator. The overexpression of cyclin D1 has been linked to the development and progression of cancer. Deregulated cyclin D1 degradation appears to be responsible for the increased levels of cyclin D1 in several cancers. Recent findings have identified novel mechanisms involved in the regulation of cyclin D1 stability. A number of therapeutic agents have been shown to induce cyclin D1 degradation. The therapeutic ablation of cyclin D1 may be useful for the prevention and treatment of cancer. In this review, current knowledge on the regulation of cyclin D1 degradation is discussed. Novel insights into cyclin D1 degradation are also discussed in the context of ablative therapy. A number of unresolved questions regarding the regulation of cellular cyclin D1 levels are also addressed.
Conclusions: Tamoxifen has been shown to inhibit ER␣-mediated cyclin D1 transcription, and acquired resistance to tamoxifen is associated with a shift to ER␣-independent cyclin D1 up-regulation. Taken together, our data show that TSA effectively induces cyclin D1 down-regulation through both ER␣-dependent and ER␣-independent mechanisms, providing an important new strategy for combating resistance to antiestrogens.
ABSTRACT:Trichostatin A is a potent and specific histone deacetylase inhibitor with promising antitumor activity in preclinical models. Plasma pharmacokinetics of trichostatin A were studied following singledose intraperitoneal administration of 80 mg/kg (high dose) or 0.5 mg/kg (low dose) to female BALB/c mice. Plasma trichostatin A concentrations were quantified by high performance liquid chromatography (HPLC)-UV assay (high dose) or by HPLC-multiple reaction monitoring assay (low dose). Trichostatin A was rapidly absorbed from the peritoneum and detectable in plasma within 2 min. C max of 40 g/ml and 8 ng/ml occurred within 5 min, followed by rapid exponential decay in plasma trichostatin A concentration with t 1/2 of 6.3 min and 9.6 min (high and low doses, respectively). Phase I metabolites at the high dose were identified by simultaneous UV and positive ion electrospray mass spectrometry. Trichostatin A underwent extensive metabolism: primary metabolic pathways were Ndemethylation, reduction of the hydroxamic acid to the corresponding trichostatin A amide, and oxidative deamination to trichostatic acid. N-Monomethyl trichostatin A amide was the major plasma metabolite. No didemethylated compounds were identified. Trichostatic acid underwent further biotransformation: reduction and -oxidation of the carboxylic acid, with or without N-demethylation, resulted in formation of dihydro trichostatic acid and dinor dihydro trichostatic acids. HPLC fractions corresponding to trichostatin A and Ndemethylated trichostatin A exhibited histone deacetylase-inhibitory activity; no other fractions were biologically active. We conclude that trichostatin A is rapidly and extensively metabolized in vivo following intraperitoneal administration to mice, and N-demethylation does not compromise histone deacetylase-inhibitory activity.
Cdc25 is required for Cdc2 dephosphorylation and is thus essential for cell cycle progression. Checkpoint activation requires dual inhibition of Cdc25 and Cdc2 in a Rad3-dependent manner. Caffeine is believed to override activation of the replication and DNA damage checkpoints by inhibiting Rad3-related proteins in both S chizosaccharomyces pombe and mammalian cells. In this study, we have investigated the impact of caffeine on Cdc25 stability, cell cycle progression and checkpoint override. Caffeine induced Cdc25 accumulation in S . pombe independently of Rad3. Caffeine delayed cell cycle progression under normal conditions but advanced mitosis in cells treated with replication inhibitors and DNA-damaging agents. In the absence of Cdc25, caffeine inhibited cell cycle progression even in the presence of hydroxyurea or phleomycin. Caffeine induces Cdc25 accumulation in S . pombe by suppressing its degradation independently of Rad3. The induction of Cdc25 accumulation was not associated with accelerated progression through mitosis, but rather with delayed progression through cytokinesis. Caffeine-induced Cdc25 accumulation appears to underlie its ability to override cell cycle checkpoints. The impact of Cdc25 accumulation on cell cycle progression is attenuated by Srk1 and Mad2. Together our findings suggest that caffeine overrides checkpoint enforcement by inducing the inappropriate nuclear localization of Cdc25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.