Acrylamide, widely used for the production of polymers and as a grouting agent, causes neurotoxic effects in humans and neurotoxic, genotoxic, reproductive, and carcinogenic effects in laboratory animals. In this study, 13C NMR spectroscopy was used to detect metabolites of acrylamide directly in the urine of rats and mice following administration of [1,2,3-13C]acrylamide (50 mg/kg po). Two-dimensional NMR experiments were used to correlate carbon signals for each metabolite in the urine samples and to determine the number of hydrogens attached to each carbon. Metabolite structures were identified from the NMR data together with calculated values of shift for biochemically feasible metabolites and by comparison with standards. The metabolites assigned in rat and mouse urine are N-acetyl-S-(3-amino-3-oxopropyl)cysteine, N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine, N-acetyl-S-(1-carbamoyl-2-hydroxy-ethyl)cysteine, glycidamide, and 2,3-dihydroxypropionamide. These metabolites arise from direct conjugation of acrylamide with glutathione or from oxidation to the epoxide, glycidamide, and further metabolism. Acrylamide was also detected in the urine. Quantitation was carried out by integrating the metabolite carbon signals with respect to that of dioxane added at a known concentration. The major metabolite for both the rat (70% of total metabolites excreted) and the mouse (40%) was formed from direct conjugation of acrylamide with glutathione. The remaining metabolites for the rat (30%) and mouse (60%) are derived from glycidamide. The species differences in extent of metabolism through glycidamide may have important consequences for the toxic and carcinogenic effects of acrylamide.
Human exposure to acrylonitrile (ACN), a carcinogen in rats, may occur in industrial settings, through waste water and tobacco smoke. ACN is an electrophilic compound and binds covalently to nucleophilic sites in macromolecules. Measurements of adducts with hemoglobin could be utilized for improved exposure assessments. In this study, a method for quantification of N-(2-cyanoethyl)valine (CEVal), the product of reaction of ACN with N-terminal valine in hemoglobin has been developed. The method is based on the N-alkyl Edman procedure, which involves derivatization of the globin with pentafluorophenyl isothiocyanate and gas chromatographic-mass spectrometric analysis of the resulting thiohydantoin. An internal standard was prepared by reacting valylglycylglycine with [2H3]ACN, spiked with [14C]ACN to a known sp. act. Levels of CEVal were measured in globin from rats exposed to 3-300 p.p.m. ACN in drinking water for 105 days and from humans (four smokers and four non-smokers). CEVal was detected at all exposure levels in the drinking water study. The relationship between adduct level and water concentration was linear at concentrations of 10 p.p.m. (corresponding to an average daily uptake of c. 0.74 mg ACN/kg body wt during the 65 days prior to sacrifice) and below, with a slope of 37.7 pmol CEVal/g globin/p.p.m. At higher concentrations, adduct levels increased sublinearly, indicating saturation of a metabolic process for elimination of ACN. Comparison of adduct formation with the estimated dose (mg/kg/day) of ACN indicated that at low dose (0-10 p.p.m.) CEVal = 0.508 x ACN dose + 0.048 and at high dose (35-300 p.p.m.) CEVal = 1.142 x ACN dose - 1.098. Globin from the smokers (10-20 cigarettes/day) contained about 90 pmol CEVal/g, whereas the adduct levels in globin from non-smokers were below the detection limit. The analytical sensitivity should be sufficient to allow monitoring of occupationally exposed workers at levels well below the current Occupational Safety and Health Administration standard of 2 p.p.m.
Ki values for leucine aldehyde, a competitive inhibitor of leucine aminopeptidase, vary with pH in a manner compatible with binding of uncharged inhibitor. The pH dependence of kcat/Km suggests likewise that the substrate leucine p-nitroanilide is productively bound as the uncharged species. Comparison of pKa values of the model compounds aminoacetone and aminoacetal indicates that the equilibrium constant for hydration of amino aldehydes is reduced by a factor of about 2 when a proton is lost from the alpha-ammonium group near pH 8. Effects of deuterium substitution at C-1 on equilibrium binding of leucine aldehyde were determined with immobilized enzyme and inhibitors doubly labeled with radioisotopes. The observed isotope effect (KD/KH) is approximately unity, suggesting that leucine aldehyde combines with the enzyme as an oxygen adduct, not as the intact aldehyde.
Experiments involving ethylene oxide (ETO) have been used to support the concept of using adducts in hemoglobin as a surrogate for DNA adducts in target tissues. The relationship between repeated exposures to ETO and the formation of N-(2-hydroxyethyl)valine (HEtVal) in hemoglobin and 7-(2-hydroxyethyl)guanine (7-HEG) in DNA was investigated in male rats and mice exposed by inhalation to 0, 3, 10, 33, or 100 ppm ETO for 6 hr/day for 4 weeks, or exposed to 100 ppm (mice) or 300 ppm (rats) for 1, 3, 5, 10, or 20 days (5 days/week). HEtVal was determined by Edman degradation, and 7-HEG was quantitated by HPLC separation and fluorescence detection. HEtVal formation was linear between 3 and 33 ppm ETO and increased in slope above 33 ppm. The dose-response curves for 7-HEG in rat tissues were linear between 10 and 100 ppm ETO and increased in slope above 100 ppm. In contrast, only exposures to 100 ppm ETO resulted in significant accumulation of 7-HEG in mice. Hemoglobin adducts were lost at a greater rate than predicted by normal erythrocyte life span. The loss of 7-HEG from DNA was both species and tissue dependent, with the adduct half-lives ranging from 2.9 to 5.8 days in rat tissues (brain, kidney, liver, lung, spleen, testis) and 1.0 to 2.3 days in all mouse tissues except kidney (t1/2 = 6.9 days). The concentrations of HEtVal were similar in concurrently exposed rats and mice, whereas DNA from rats had at least 2-fold greater concentrations of 7-HEG than DNA from mice.(ABSTRACT TRUNCATED AT 250 WORDS)
DXG {[2R-cis]-2-amino-1,9-dihydro-9-[2-[hydroxymethyl]-1,3-dioxolan-4-yl]-6H-purin-6-one} and its prodrug DAPD ([2R-cis]-4-[2,6-diamino-9H-purin-9-yl]-1,3-dioxolane-2-methanol; amdoxovir) are novel 2,3-dideoxynucleosides (ddNs) displaying activity against human immunodeficiency virus type 1 (HIV-1). In this paper, we describe the development of an enzymatic assay for determining the intracellular active metabolite of DXG and DAPD, DXG triphosphate (DXGTP), in peripheral blood mononuclear cells (PBMCs) from HIV-infected patients. The assay involves inhibition of HIV reverse transcriptase (RT), which normally incorporates radiolabeled deoxynucleoside triphosphates (dNTPs) into a synthetic template primer. DXGTP (0.6 pmol) inhibited control product formation with or without a preincubation step. Inhibition was greatest when the template primer was most diluted. DAPDTP inhibited control product formation only at very high levels (50 pmol) and when a preincubation procedure was used. However, reduced template primer stability in assays using preincubation steps, coupled with potential interference by DAPDTP, led to the current assay method for DXGTP being performed without preincubation. Standard DXGTP inhibition curves were constructed. The presence of PBMC extracts or endogenous dGTP did not interfere with the DXGTP assay. Current therapy for the treatment of human immunodeficiency virus (HIV) infection involves the use of two 2Ј,3Ј-dideoxynucleoside (ddN) reverse transcriptase (RT) inhibitors in combination with nonnucleoside RT inhibitors and protease inhibitors. However, continued use of these compounds can lead to the development of resistant virus as well as decreased tolerability. Therefore, the production of novel agents that possess drug-resistant viral activity while incorporating favorable toxicity profiles is justified.DXG {[2R-cis]-2-amino-1,9-dihydro-9-(2-[hydroxymethyl)-1,3-dioxolan-4-yl]-6H-purin-6-one} and its prodrug, DAPD ([2R-cis]-4-[2,6-diamino-9H-purin-9-yl]-1,3-dioxolane-2-methanol; amdoxovir), are novel ddNs displaying activity against HIV type 1 (HIV-1) (8,9,14,22). The chemical structures of these two compounds are shown in Fig. 1. The use of DAPD (and DXG) in antiretroviral therapy is advantageous, because cross-resistance with other ddNs is minimal. For example, studies have shown that zidovudine (ZDV)-resistant virus remained sensitive to DAPD and DXG, whereas both compounds are only marginally less potent against lamivudine (3TC)-resistant virus (3, 9). Furthermore, DAPD and DXG display synergy with other antiretroviral agents and have favorable safety profiles (8, 9), suggesting that these compounds are good candidates in salvage therapy regimens.DAPD is deaminated to DXG by the ubiquitous enzyme adenosine deaminase (18), which is then sequentially phosphorylated by intracellular kinases to its active anabolite, DXG-5Ј-triphosphate (DXGTP). In vitro studies have shown that DXGTP is much more potent than DAPDTP against HIV-1 RT (K i ϭ 0.019 M for DXGTP and 250 M for DAPDTP)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.