We determine the quality of randomized social choice mechanisms in a setting in which the agents have metric preferences: every agent has a cost for each alternative, and these costs form a metric. We assume that these costs are unknown to the mechanisms (and possibly even to the agents themselves), which means we cannot simply select the optimal alternative, i.e. the alternative that minimizes the total agent cost (or median agent cost). However, we do assume that the agents know their ordinal preferences that are induced by the metric space. We examine randomized social choice functions that require only this ordinal information and select an alternative that is good in expectation with respect to the costs from the metric. To quantify how good a randomized social choice function is, we bound the distortion, which is the worst-case ratio between expected cost of the alternative selected and the cost of the optimal alternative. We provide new distortion bounds for a variety of randomized mechanisms, for both general metrics and for important special cases. Our results show a sizable improvement in distortion over deterministic mechanisms.
We study assignment games in which jobs select machines, and in which certain pairs of jobs may conflict, which is to say they may incur an additional cost when they are both assigned to the same machine, beyond that associated with the increase in load. Questions regarding such interactions apply beyond allocating jobs to machines: when people in a social network choose to align themselves with a group or party, they typically do so based upon not only the inherent quality of that group, but also who amongst their friends (or enemies) choose that group as well. We show how semi-smoothness, a recently introduced generalization of smoothness, is necessary to find tight bounds on the price of total anarchy, and thus on the quality of correlated and Nash equilibria, for several natural job-assignment games with interacting jobs. For most cases, our bounds on the price of total anarchy are either exactly 2 or approach 2. We also prove new convergence results implied by semi-smoothness for our games. Finally we consider coalitional deviations, and prove results about the existence and quality of strong equilibrium.
We examine the quality of social choice mechanisms using a utilitarian view, in which all of the agents have costs for each of the possible alternatives. While these underlying costs determine what the optimal alternative is, they may be unknown to the social choice mechanism; instead the mechanism must decide on a good alternative based only on the ordinal preferences of the agents which are induced by the underlying costs. Due to its limited information, such a social choice mechanism cannot simply select the alternative that minimizes the total social cost (or minimizes some other objective function). Thus, we seek to bound the distortion: the worst-case ratio between the social cost of the alternative selected and the optimal alternative. Distortion measures how good a mechanism is at approximating the alternative with minimum social cost, while using only ordinal preference information. The underlying costs can be arbitrary, implicit, and unknown; our only assumption is that the agent costs form a metric space, which is a natural assumption in many settings. We quantify the distortion of many well-known social choice mechanisms. We show that for both total social cost and median agent cost, many positional scoring rules have large distortion, while on the other hand Copeland and similar mechanisms perform optimally or near-optimally, always obtaining a distortion of at most 5. We also give lower bounds on the distortion that could be obtained by any deterministic social choice mechanism, and extend our results on median agent cost to more general objective functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.