We report a new regime of single-surface multipactor that was observed during high-power testing of an 11.424-GHz alumina-based dielectric-loaded accelerating structure. Previous experimental observations of single-surface multipactor on a dielectric occurred in cases for which the rf electric field was tangential and the rf power flow was normal to the dielectric surface (such as on rf windows) and found that the fraction of power absorbed at saturation is approximately 1%, independent of the incident power. In this new regime, in which strong normal and tangential rf electric fields are present and the power flow is parallel to the surface, the fraction of power absorbed at saturation is an increasing function of the incident power, and more than half of the incident power can be absorbed. A simple model is presented to explain the experimental results.
One approach to future high energy particle accelerators is based on the wakefield principle: a leading high-charge drive bunch is used to excite fields in an accelerating structure or plasma that in turn accelerates a trailing low-charge witness bunch. The transformer ratio R is defined as the ratio of the maximum energy gain of the witness bunch to the maximum energy loss of the drive bunch. In general, R<2 for this configuration. A number of techniques have been proposed to overcome the transformer ratio limitation. We report here the first experimental study of the ramped bunch train (RBT) technique in a dielectric based accelerating structure. A single drive bunch was replaced by two bunches with charge ratio of 1:2.5 and a separation of 10.5 wavelengths of the fundamental mode. An average measured transformer ratio enhancement by a factor of 1.31 over the single drive bunch case was obtained.
(To be published in Physical Review E)We report on measurements of 11-18 cm wavelength radio emission from interactions of 15.2 MeV pulsed electron bunches at the Argonne Wakefield Accelerator. The electrons were observed both in a configuration where they produced primarily transition radiation from an aluminum foil, and in a configuration designed for the electrons to produce Cherenkov radiation in a silica sand target. Our aim was to emulate the large electron excess expected to develop during an electromagnetic cascade initiated by an ultra-high-energy particle. Such charge asymmetries are predicted to produce strong coherent radio pulses, which are the basis for several experiments to detect high-energy neutrinos from the showers they induce in Antarctic ice and in the lunar regolith. We detected coherent emission which we attribute both to transition and possibly Cherenkov radiation at different levels depending on the experimental conditions. We discuss implications for experiments relying on radio emission for detection of electromagnetic cascades produced by ultra highenergy neutrinos.
We propose a general method for tailoring the current distribution of relativistic electron bunches. The technique relies on a recently proposed method to exchange the longitudinal phase space emittance with one of the transverse emittances. The method consists of transversely shaping the bunch and then converting its transverse profile into a current profile via a transverse-to-longitudinal phase-spaceexchange beam line. We show that it is possible to tailor the current profile to follow, in principle, any desired distributions. We demonstrate, via computer simulations, the application of the method to generate trains of microbunches with tunable spacing and linearly ramped current profiles. We also briefly explore potential applications of the technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.