In 1974 the U.S. Coast Guard put into operation its first computerized search and rescue planning system CASP (Computer-Assisted Search Planning) which used a Bayesian approach implemented by a particle filter to produce probability distributions for the location of the search object. These distributions were used for planning search effort. In
2003, the Coast Guard started development of a new decision support system for managing search efforts called Search and Rescue Optimal Planning System (SAROPS).SAROPS has been operational since January, 2007 and is currently the only search planning tool that the Coast Guard uses for maritime searches. SAROPS represents a major advance in search planning technology. This paper reviews the technology behind the tool.
Although additional experiments are required for the medium- and low-visibility search objects and in the dry-domain ecoregion, we suggest search planners use the following correction factors to convert field-measured Rd to an estimate of the effective sweep width (W): high-visibility W = 1.8 × Rd; medium-visibility W = 1.6 × Rd; and low-visibility W = 1.1 × Rd.
Venom ophthalmia caused by venoms of spitting elapid and other snakes: report of ten cases with review of epidemiology, clinical features, pathophysiology and management. Toxicon. 2010;56:259-272. 5. Prescott RA, Potter PC. Hypersensitivity to airborne spitting cobra snake venom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.