The Modulation Transfer Function (MTF) and the Noise Power Spectrum (NPS) characterize imaging system sharpness/resolution and noise, respectively. Both measures are based on linear system theory but are applied routinely to systems employing non-linear, content-aware image processing. For such systems, MTFs/NPSs are derived inaccurately from traditional test charts containing edges, sinusoids, noise or uniform tone signals, which are unrepresentative of natural scene signals. The dead leaves test chart delivers improved measurements, but still has limitations when describing the performance of scene-dependent systems. In this paper, we validate several novel scene-and-process-dependent MTF (SPD-MTF) and NPS (SPD-NPS) measures that characterize, either: i) system performance concerning one scene, or ii) average real-world performance concerning many scenes, or iii) the level of system scene-dependency. We also derive novel SPD-NPS and SPD-MTF measures using the dead leaves chart. We demonstrate that all the proposed measures are robust and preferable for scene-dependent systems than current measures.
The photopic flicker sensitivity of the chicken was determined using an operant conditioning psychophysical technique. The results show both high- and low-frequency fall-off in the sensitivity response, which peaked around 15 Hz. Flicker sensitivity was determined for a range of stimulus luminance levels, and directly compared to human flicker response measured under similar stimulus conditions. At five luminance levels (10, 100, 200, 500 and 1000 cd/m(2)), the overall chicken flicker sensitivity was found to be considerably lower than for humans, except at high frequencies. A greater degree of frequency tuning was also found in the chicken response. The critical flicker fusion values were either similar or slightly higher for chickens compared to humans (40.8, 50.4, 53.3, 58.2 and 57.4 Hz vs 39.2, 54.0, 54.0, 57.4 and 71.5 Hz respectively for humans and chickens for increasing stimulus luminance level). A recently proposed model for flicker sensitivity [Vision Research 39 (1999) 533], which incorporates low- and high-pass temporal filters in cascade, was found to be applicable to the chicken response. From this model, deductions were made concerning mechanisms controlling the transfer of temporal information.
The validity of the Rovamo-Barten modulation transfer function model for describing spatial contrast sensitivity in vertebrates was examined using published data for the human, macaque, cat, goldfish, pigeon and rat. Under photopic conditions, the model adequately described overall contrast sensitivity for changes in both stimulus luminance and stimulus size for each member of this diverse range of species. From this examination, optical, retinal and post-retinal neural processes subserving contrast sensitivity were quantified. An important retinal process is lateral inhibition and values of its associated point spread function (PSF) were obtained for each species. Some auxiliary contrast sensitivity data obtained from the owl monkey were included for these calculations. Modeled values of the lateral inhibition PSF were found to correlate well with ganglion cell receptive field surround size measurements obtained directly from electrophysiology. The range of vertebrates studied was then further extended to include the squirrel monkey, tree shrew, rabbit, chicken and eagle. To a first approximation, modeled estimates of lateral inhibition PSF width were found to be inversely proportional to the square root of ganglion cell density. This finding is consistent with a receptive field surround diameter that changes in direct proportion to the distance between ganglion cells for central vision. For the main species examined, contrast sensitivity is considerably less than that for the human. Although this is due in part to a reduction in the performance of both optical and retinal mechanisms, the model indicates that poor cortical detection efficiency plays a significant role.
Pupil responses triggered by specific stimulus attributes such as spatial structure, colour and light flux changes were measured in eight domestic fowl. Comparative experiments were also carried out in human subjects. The results were unexpected in that large increments in light flux caused only small constrictions of the pupil. A red stimulus, on the other hand, caused a relatively large pupil response, but a green stimulus was less effective. This finding suggests that the size of the pupil, apart from being controlled by well-described pretectal pathways that mediate luminance responses, is also subject to other inputs. The pupil response in the domestic fowl may therefore make an effective quantitative indicator of things of significance to the animal. In some ways these observations are similar to other findings in primates in that the processing of stimulus attributes such as colour and structure that are not normally associated with the light reflex pathway can cause a pupil response. The fowl pupil does however respond very fast when large light flux changes or red stimuli are involved. Results obtained with sinusoidally modulated light flux changes reveal a short response latency of 105 ms (SD=8.3). In contrast, human responses measured for similar stimulus conditions reveal a latency of 434 ms (SD=36). The speed of pupil response in the fowl is significantly higher than in humans, but the response amplitude is usually small. Another interesting observation is the lack of sustained response to changes in ambient illumination. These findings suggest that the input to the pupilloconstrictor neurones in the fowl consists largely of transient neurones with little sustained component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.