The photopic flicker sensitivity of the chicken was determined using an operant conditioning psychophysical technique. The results show both high- and low-frequency fall-off in the sensitivity response, which peaked around 15 Hz. Flicker sensitivity was determined for a range of stimulus luminance levels, and directly compared to human flicker response measured under similar stimulus conditions. At five luminance levels (10, 100, 200, 500 and 1000 cd/m(2)), the overall chicken flicker sensitivity was found to be considerably lower than for humans, except at high frequencies. A greater degree of frequency tuning was also found in the chicken response. The critical flicker fusion values were either similar or slightly higher for chickens compared to humans (40.8, 50.4, 53.3, 58.2 and 57.4 Hz vs 39.2, 54.0, 54.0, 57.4 and 71.5 Hz respectively for humans and chickens for increasing stimulus luminance level). A recently proposed model for flicker sensitivity [Vision Research 39 (1999) 533], which incorporates low- and high-pass temporal filters in cascade, was found to be applicable to the chicken response. From this model, deductions were made concerning mechanisms controlling the transfer of temporal information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.