Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible, modular system. Here, we established several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene-regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2, and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3’ vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Lastly, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker active prior to hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish, and other models.
Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible, modular system. Here, we established several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene-regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2, and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Lastly, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker active prior to hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish, and other models.
Background: Fetal Alcohol Spectrum Disorders (FASD) describe a continuum of ethanol-induced developmental defects including commonly observed craniofacial malformations. While ethanol-sensitive genetic mutations are a major contributor to facial malformations, the impacted cellular mechanisms underlying these facial anomalies remain unknown. The Bone Morphogenetic Protein (Bmp) signaling pathway is a key regulator of epithelial morphogenesis driving facial development, providing a possible ethanol-sensitive mechanism to malformations to the facial skeleton. Methods: Using zebrafish, we tested several mutants for Bmp pathway components for ethanol-induced facial malformations. Mutant embryos were exposed to ethanol in the media from 10-18 hours post-fertilization (hpf). Exposed zebrafish were fixed at 36 hpf to analyze anterior pharyngeal endoderm size and shape by immunofluorescence or at 5 days post-fertilization (dpf) to quantitatively examine shape of the facial skeleton stained with Alcian Blue/Alizarin Red staining. Integrating human genetic data, we screened for Bmp-ethanol associations in jaw volume of ethanol-exposed children. Results: We found that mutations in the Bmp pathway sensitize zebrafish embryos to ethanol-induced malformations to anterior pharyngeal endoderm shape, leading to altered expression of fgf8a in the oral ectoderm. These changes correlate with shape changes in the viscerocranium, suggesting that ethanol-induced malformations of the anterior pharyngeal endoderm lead to facial malformations. Variants in the Bmp receptor gene, BMPR1B were associated with ethanol-related differences in jaw volume in humans. Conclusions: For the first time, we show that ethanol exposure disrupts proper morphogenesis of, and tissue interactions between, the facial epithelia. These shape changes in the anterior pharyngeal endoderm-oral ectoderm-signaling axis during early zebrafish development mirror the overall shape changes observed in the viscerocranium and were predictive for Bmp-ethanol associations in jaw development in human. Collectively, our work provides a mechanistic paradigm linking the impact of ethanol to the epithelial cell behaviors that underlie facial defects in FASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.